In this work, we propose and investigate a predator-prey model where the prey population is structured by sex and the predators (unstructured) depredate based on sex-bias. We provide conditions for the existence of equilibrium points and perform local stability analysis on them. We derive global stability conditions for the extinction state. We show the possible occurrence of Hopf and saddle-node bifurcations. Multiple Hopf bifurcations are observed as the sex-biased predation rate is varied. This variation also shows the opposite consequences in the densities of the sex-structured prey. Our results show that sex-biased predation can cause both stabilizing and destabilizing effects for certain parameter choices. It can also cause an imbalanced sex-ratio, which has ecological consequences. Furthermore when intraspecific competition among predators is minimized, it can lead to the extinction of prey. We discuss the ecological implications and application of our results to the biocontrol of invasive species susceptible to sex-biased predation.
In this work, we propose a predator-prey system with a Holling type Ⅱ functional response and study its dynamics when the prey exhibits vigilance behavior to avoid predation and predators exhibit cooperative hunting. We provide conditions for existence and the local and global stability of equilibria. We carry out detailed bifurcation analysis and find the system to experience Hopf, saddle-node, and transcritical bifurcations. Our results show that increased prey vigilance can stabilize the system, but when vigilance levels are too high, it causes a decrease in the population density of prey and leads to extinction. When hunting cooperation is intensive, it can destabilize the system, and can also induce bi-stability phenomenon. Furthermore, it can reduce the population density of both prey and predators and also change the stability of a coexistence state. We provide numerical experiments to validate our theoretical results and discuss ecological implications.
- Award ID(s):
- 1851948
- PAR ID:
- 10497124
- Publisher / Repository:
- AIMS publishing
- Date Published:
- Journal Name:
- Mathematical Biosciences and Engineering
- Volume:
- 21
- Issue:
- 2
- ISSN:
- 1551-0018
- Page Range / eLocation ID:
- 2768 to 2786
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fear of predation may assert privilege to prey species by restricting their exposure to potential predators, meanwhile it can also impose costs by constraining the exploration of optimal resources. A predator–prey model with the effect of fear, refuge, and hunting cooperation has been investigated in this paper. The system’s equilibria are obtained and their local stability behavior is discussed. The existence of Hopf-bifurcation is analytically shown by taking refuge as a bifurcation parameter. There are many ecological factors which are not instantaneous processes, and so, to make the system more realistic, we incorporate three discrete time delays: in the effect of fear, refuge and hunting cooperation, and analyze the delayed system for stability and bifurcation. Moreover, for environmental fluctuations, we further modify the delayed system by incorporating seasonality in the fear, refuge and cooperation. We have analyzed the seasonally forced delayed system for the existence of a positive periodic solution. In the support of analytical results, some numerical simulations are carried out. Sensitivity analysis is used to identify parameters having crucial impacts on the ecological balance of predator–prey interactions. We find that the rate of predation, fear, and hunting cooperation destabilizes the system, whereas prey refuge stabilizes the system. Time delay in the cooperation behavior generates irregular oscillations whereas delay in refuge stabilizes an otherwise unstable system. Seasonal variations in the level of fear and refuge generate higher periodic solutions and bursting patterns, respectively, which can be replaced by simple 1-periodic solution if the cooperation and fear are also allowed to vary with time in the former and latter situations. Higher periodicity and bursting patterns are also observed due to synergistic effects of delay and seasonality. Our results indicate that the combined effects of fear, refuge and hunting cooperation play a major role in maintaining a healthy ecological environment.more » « less
-
Abstract The healthy herds hypothesis proposes that predators can reduce parasite prevalence and thereby increase the density of their prey. However, evidence for such predator‐driven reductions in the prevalence of prey remains mixed. Furthermore, even less evidence supports increases in prey density during epidemics. Here, we used a planktonic predator–prey–parasite system to experimentally test the healthy herds hypothesis. We manipulated density of a predator (the phantom midge,
Chaoborus punctipennis ) and parasitism (the virulent fungusMetschnikowia bicuspidata ) in experimental assemblages. Because we know natural populations of the prey (Daphnia dentifera ) vary in susceptibility to both predator and parasite, we stocked experimental populations with nine genotypes spanning a broad range of susceptibility to both enemies. Predation significantly reduced infection prevalence, eliminating infection at the highest predation level. However, lower parasitism did not increase densities of prey; instead, prey density decreased substantially at the highest predation levels (a major density cost of healthy herds predation). This density result was predicted by a model parameterized for this system. The model specifies three conditions for predation to increase prey density during epidemics: (i) predators selectively feed on infected prey, (ii) consumed infected prey release fewer infectious propagules than unconsumed prey, and (iii) sufficiently low infection prevalence. While the system satisfied the first two conditions, prevalence remained too high to see an increase in prey density with predation. Low prey densities caused by high predation drove increases in algal resources of the prey, fueling greater reproduction, indicating that consumer–resource interactions can complicate predator–prey–parasite dynamics. Overall, in our experiment, predation reduced the prevalence of a virulent parasite but, at the highest levels, also reduced prey density. Hence, while healthy herds predation is possible under some conditions, our empirical results make it clear that the manipulation of predators to reduce parasite prevalence may harm prey density. -
Abstract Predators and prey are often engaged in a game where their expected fitnesses are affected by their relative spatial distributions. Game models generally predict that when predators and prey move at similar temporal and spatial scales that predators should distribute themselves to match the distribution of the prey's resources and that prey should be relatively uniformly distributed. These predictions should better apply to sit‐and‐pursue and sit‐and‐wait predators, who must anticipate the spatial distributions of their prey, than active predators that search for their prey. We test this with an experiment observing the spatial distributions and estimating the causes of movements between patches for Pacific tree frog tadpoles (
Pseudacris regilla ), a sit‐and‐pursue dragonfly larvae predator (Rhionaeschna multicolor ), and an active salamander larval predator (Ambystoma tigrinum mavortium ) when a single species was in the arena and when the prey was with one of the predators. We find that the sit‐and‐pursue predator favors patches with more of the prey's algae resources when the prey is not in the experimental arena and that the prey, when in the arena with this predator, do not favor patches with more resources. We also find that the active predator does not favor patches with more algae and that prey, when with an active predator, continue to favor these higher resource patches. These results suggest that the hunting modes of predators impact their spatial distributions and the spatial distributions of their prey, which has potential to have cascading effects on lower trophic levels. -
Abstract Recolonization of predators to their former ranges is becoming increasingly prevalent. Such recolonization places predators among their prey once again; the latter having lived without predation (from such predators) for a considerable time. This renewed coexistence creates opportunities to explore predation ecology at both fundamental and applied levels. We used a paired experimental design to investigate white‐tailed deer risk allocation in the Upper and Lower Peninsulas (UP and LP) in Michigan, USA. Wolves are functionally absent in the LP, while deer in the UP coexist with a re‐established wolf population. We treated 15 sites each in UP and LP with wolf olfactory cues and observed deer vigilance, activity, and visitation rates at the interface of habitat covariates using remote cameras. Such a paired design across wolf versus no‐wolf areas allowed us to examine indirect predation effects while accounting for confounding parameters such as the presence of other predators and human activity. While wolf urine had no effect across most metrics in both UP and LP, we observed differences in deer activity in areas with versus without wolves. Sites treated with wolf urine in the UP showed a reduction in crepuscular deer activity, compared to control/novel‐scent treated sites. Furthermore, we observed a strong positive effect of vegetation cover on deer vigilance in these sites. This indicates that simulated predator cues likely affect deer vigilance more acutely in denser habitats, which presumably facilitates predation success. Such responses were however absent among deer in the LP that are presumably naïve toward wolf predation. Where human and non‐human predators hunt shared prey, such as in Michigan, predators may constrain human hunting success by increasing deer vigilance. Hunters may avoid such exploitative competition by choosing hunting/bait sites located in open areas. Our results pertaining to fundamental predation ecology have strong applied implications that can promote human–predator coexistence.