skip to main content

Title: Binder Jetting Additive Manufacturing of Ceramics: Feedstock Powder Preparation by Spray Freeze Granulation
Objective of this study is to prepare the binder jetting feedstock powder by spray freeze drying and study the effects of its parameters on the powder properties. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. However, this process is limited by the relatively low density of the fabricated parts even after sintering. The main cause comes from the contradicting requirements of the particle size of the feedstock powder: a large particle size (>5 μm) is required for a high flowability while a small particle size (<1 μm) for a high sinterability. For the first time, a novel technology for the feedstock material preparation, called spray freeze drying, is investigated to address this contradiction. Using raw alumina nanopowder (100 nm), a full factorial design at two levels for two factors (spraying pressure and slurry feed rate) was formed to study their effects on the properties (i.e., granule size, flowability, and sinterability) of the obtained granulated powder. Results show that high pressure and small feed rate lead to small granule size. Compared with the raw powder, the flowability of the granulated powders was significantly increased, and the high sinterability was also maintained. This study proves that spray freeze granulation is a promising technology for the feedstock powder preparation of binder jetting additive manufacturing.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the ASME 2019 International Manufacturing Science and Engineering Conference (MSEC2019)
Page Range / eLocation ID:
MSEC2019 3001
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The objective of this study is to compare three different feedstock powders for the binder jetting process by characterizing their flowability and sinterability. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. Granulation is a promising material preparation method due to the potential high sinterability and flowability of the produced powder. However, no study has been made to systematically compare raw and granulated powders in terms of their flowing and sintering behaviors. This paper aims at filling this knowledge gap. Two raw powders (i.e., fine raw powder of 300 nm and coarse raw powder of 70 μm) and one granulated powder from spray freeze drying were compared. Different flowability metrics, including volumetric flow rate, mass flow rate, Hausner ratio, Carr index, and repose angle were measured. Different sinterability metrics, including sintered bulk density, volume shrinkage, and densification ratio were compared for all three powders. Results show that granulated powder achieved comparably high flowability to that of the coarse raw powder and also comparably high sinterability to that of the fine raw powder. Moreover, suitable metrics for the characterization of the sinterability and flowability for these three powders are recommended. This study suggests spray freeze drying produces high-quality feedstock powder for binder jetting process. 
    more » « less
  2. Abstract Feedstock powders used in binder jetting additive manufacturing include nanopowder, micropowder, and granulated powder. Two important characteristics of the feedstock powders are flowability and sinterability. This paper aims to compare the flowability and sinterability of different feedstock powders. Three powders were compared: nanopowder (with a particle size of ∼100 nm), micropowder (with a particle size of 70 μm), and granulated powder (with a granule size of ∼70 μm) made from the nanopowder by spray freeze drying. Flowability metrics employed included apparent density (AD), tap density (TD), volumetric flow rate (VFR), mass flow rate (MFR), Hausner ratio (HR), Carr index (CI), and repose angle (RA). Sinterability metrics employed included sintered bulk density (SBD), volumetric shrinkage (VS), and densification ratio (DR). Results show that the granulated powder has a higher flowability than the nanopowder and a higher sinterability than the micropowder. Moreover, different flowability metric values of the granulated powder are close to those of the micropowder, indicating that these two powers have a comparably high flowability. Similarly, different sinterability metric values of the granulated powder are close to those of the nanopowder, indicating that these two powders have a comparably high sinterability. 
    more » « less
  3. null (Ed.)
    Binder Jetting has gained particular interest amongst Additive Manufacturing (AM) techniques because of its wide range of applications, broader feasible material systems, and absence of rapid melting-solidification issues present in other AM processes. Understanding and optimizing printing parameters during the powder spreading process is essential to improve the quality of the final part. In this study, a Discrete Element Method (DEM) simulation is employed to evaluate the powder packing density, flowability, and porosity during powder spreading process utilizing three different powder groups. Two groups are formed with monoidal size distributions (75–84 μm and 100–109 μm), and the third one consisting of a bimodal distribution (50 μm + 100 μm).

    A thorough investigation into the effects of powder size distribution during the powder spreading step in a binder jetting process is conducted using ceramic foundry sand. It was observed that coarser particles result in higher flowability (62% decrease in repose angle) than finer ones due to the cohesion effect present in the latter. A bimodal size distribution yields the highest packing density (8% increase) and lowest porosity (∼12% reduction) in the powder bed, as the finer particles fill in the voids created between the coarser ones. Findings from this study are directly applicable to binder-jetting AM process, and also offer new insights for AM powder manufacturers.

    more » « less
  4. In binder jetting, shrinkage and deformation occur during the sintering step, both of which are affected by the green density of the binder jetted materials. The study innovatively introduces a cost-effective, practical, and in-process monitoring system for visualizing shrinkage and deformation on larger samples than conventionally observed using small-scale specimens in dillatometry equipment. The powder characteristics and binder jet printing process itself influence the initial green density. The comprehensive analysis of powder flowability and packing density, densification behavior, and shrinkage reveals that the consolidated parts using virgin powder (with a green density of 55%) can achieve a relative density above 99.9% with an anisotropic shrinkage in the Z>X>Y direction. In contrast, the used or recycled powder exhibits a lower green density of ∼48%, higher shrinkage rate in all three dimensions, and a decreased degree of anisotropy. Using in-process imaging and experimental data on the grain size attained through optical microscopy and electron backscatered diffraction imaging, the material's shear and bulk viscosities were determined. The formation of delta-ferrite and its impact on densification were discussed in the context of solid-state and supersolidus liquid phase sintering. The model relied on the continuum sintering theory formulated by Skorohod and Olevsky. The strain evolution from the in-situ imaging of sintering process is correlated with porosity based on the used feedstock and applied sintering temperatures. The outcomes of this study offer valuable perspectives on anisotropic sintering mechanisms, bridging the knowledge gap regarding the relationships between structures produced through binder jetting and subsequent sintering of materials. 
    more » « less
  5. null (Ed.)
    Binder Jetting (BJ) is a low-cost Additive Manufacturing (AM) process that uses inkjet technology to selectively bind particles in a powder bed. BJ relies on the ability to control, not only the placement of binder on the surface but also its imbibition into the powder bed. This is a complex process in which picoliter-sized droplets impact powder beds at velocities of 1–10 m/s. However, the effects of printing parameters such as droplet velocity, size, spacing, and inter-arrival time on saturation level (fraction of pore space filled with binder) and line formation (merging of droplets to form a line) are unknown. Prior attempts to predict saturation levels with simple measurements of droplet primitives and capillary pressure assume that droplet/powder interactions are dominated by static equilibrium and neglect the impact of printing parameters. This study analyzes the influence of these parameters on the effective saturation level and conditions for line formation when printing single lines into powder beds of varied materials (316 stainless steel, 420 stainless steel, and alumina) and varied particle size (d50=10–47 µm). Results show that increasing droplet velocity or droplet spacing decreases effective saturation while droplet spacing, velocity, and inter-arrival time affect line formation. At constant printing velocity, the conditions for successful line printing are shown to be a function of droplet spacing and square root of the droplet inter-arrival time analogous to the Washburn model for infiltration into a porous media. The results have implications to maximizing build rates and improving quality of small features in BJ. 
    more » « less