Abstract Feedstock powders used in binder jetting additive manufacturing include nanopowder, micropowder, and granulated powder. Two important characteristics of the feedstock powders are flowability and sinterability. This paper aims to compare the flowability and sinterability of different feedstock powders. Three powders were compared: nanopowder (with a particle size of ∼100 nm), micropowder (with a particle size of 70 μm), and granulated powder (with a granule size of ∼70 μm) made from the nanopowder by spray freeze drying. Flowability metrics employed included apparent density (AD), tap density (TD), volumetric flow rate (VFR), mass flow rate (MFR), Hausner ratio (HR), Carr index (CI), and repose angle (RA). Sinterability metrics employed included sintered bulk density (SBD), volumetric shrinkage (VS), and densification ratio (DR). Results show that the granulated powder has a higher flowability than the nanopowder and a higher sinterability than the micropowder. Moreover, different flowability metric values of the granulated powder are close to those of the micropowder, indicating that these two powers have a comparably high flowability. Similarly, different sinterability metric values of the granulated powder are close to those of the nanopowder, indicating that these two powders have a comparably high sinterability.
more »
« less
Binder Jetting Additive Manufacturing of Ceramics: Comparison of Flowability and Sinterability between Raw and Granulated Powders
The objective of this study is to compare three different feedstock powders for the binder jetting process by characterizing their flowability and sinterability. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. Granulation is a promising material preparation method due to the potential high sinterability and flowability of the produced powder. However, no study has been made to systematically compare raw and granulated powders in terms of their flowing and sintering behaviors. This paper aims at filling this knowledge gap. Two raw powders (i.e., fine raw powder of 300 nm and coarse raw powder of 70 μm) and one granulated powder from spray freeze drying were compared. Different flowability metrics, including volumetric flow rate, mass flow rate, Hausner ratio, Carr index, and repose angle were measured. Different sinterability metrics, including sintered bulk density, volume shrinkage, and densification ratio were compared for all three powders. Results show that granulated powder achieved comparably high flowability to that of the coarse raw powder and also comparably high sinterability to that of the fine raw powder. Moreover, suitable metrics for the characterization of the sinterability and flowability for these three powders are recommended. This study suggests spray freeze drying produces high-quality feedstock powder for binder jetting process.
more »
« less
- Award ID(s):
- 1762341
- PAR ID:
- 10105470
- Date Published:
- Journal Name:
- Proceedings of the ASME 2019 International Manufacturing Science and Engineering Conference (MSEC2019)
- Page Range / eLocation ID:
- MSEC2019-2983
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Objective of this study is to prepare the binder jetting feedstock powder by spray freeze drying and study the effects of its parameters on the powder properties. Binder jetting additive manufacturing is a promising technology for fabricating ceramic parts with complex or customized geometries. However, this process is limited by the relatively low density of the fabricated parts even after sintering. The main cause comes from the contradicting requirements of the particle size of the feedstock powder: a large particle size (>5 μm) is required for a high flowability while a small particle size (<1 μm) for a high sinterability. For the first time, a novel technology for the feedstock material preparation, called spray freeze drying, is investigated to address this contradiction. Using raw alumina nanopowder (100 nm), a full factorial design at two levels for two factors (spraying pressure and slurry feed rate) was formed to study their effects on the properties (i.e., granule size, flowability, and sinterability) of the obtained granulated powder. Results show that high pressure and small feed rate lead to small granule size. Compared with the raw powder, the flowability of the granulated powders was significantly increased, and the high sinterability was also maintained. This study proves that spray freeze granulation is a promising technology for the feedstock powder preparation of binder jetting additive manufacturing.more » « less
-
Binder jetting (BJT) has been extensively explored for additive manufacturing of ceramics due to its ability to create complex structures by processing refractory and hard-to-machine materials. However, achieving a uniform powder bed with high packing density while processing ceramics in BJT remains a challenge. This study systematically examines the role of powder size, powder temperature, flow behavior, and powder size distribution on powder bed formation and resulting part properties. Four different alumina powder sizes (1 μm, 5 μm, 10 μm, and 20 μm) were investigated. Flowability characterizations reveal that 1 μm powder remains poorly flowable at both room and elevated temperatures, while 20 μm powder demonstrates excellent flowability at both temperatures. Smaller powders, especially 1 μm, exhibit around 25% loss in moisture, which results in pronounced agglomeration at room temperature. Discrete element method simulations were used to identify the ideal mixing ratio of the bimodal powder using 5 μm and 20 μm powders. For bimodal powder, both the simulation and the experiments exhibited a preferential deposition of smaller powders in the spreading direction. However, the 5 μm and 20 μm powders did not show any preferential deposition in the simulation, but experiments showed preferential deposition behavior. When using bimodal powder, packing density decreases by 7.65% along the spreading direction, which aligns with an 8.19% drop in part relative density. These findings offer valuable insights into the effects of bimodal powder distribution for controlling powder bed packing density and potentially leveraging spatial density variations for functional applications such as biomedical implants, heat exchangers, and gas filtration.more » « less
-
null (Ed.)Abstract This paper reports a study on the effects of particle size distribution (tuned by mixing different-sized powders) on density of a densely packed powder, powder bed density, and sintered density in binder jetting additive manufacturing. An analytical model was used first to study the mixture packing density. Analytical results showed that multimodal (bimodal or trimodal) mixtures could achieve a higher packing density than their component powders and there existed an optimal mixing fraction to achieve the maximum mixture packing density. Both a lower component particle size ratio (fine to coarse) and a larger component packing density ratio (fine to coarse) led to a larger maximum mixture packing density. A threshold existed for the component packing density ratio, below which the mixing method was not effective for density improvement. Its relationship to the component particle size ratio was calculated and plotted. In addition, the dependence of the optimal mixing fraction and maximum mixture packing density on the component particle size ratio and component packing density ratio was calculated and plotted. These plots can be used as theoretical tools to select parameters for the mixing method. Experimental results of tap density were consistent with the above-mentioned analytical predictions. Also, experimental measurements showed that powders with multimodal particle size distributions achieved a higher tap density, powder bed density, and sintered density in most cases.more » « less
-
Abstract The objective of this review paper is to summarize the current status and identify the knowledge gaps in ceramic binder jetting additive manufacturing, with a particular focus on density. This paper begins with an overview of ceramic binder jetting. Then, it discusses different aspects of density, including various terminologies, measurement methods, and achieved values. Afterward, it reviews two categories of techniques to increase the part density: material preparation techniques (powder granulation, mixing powders of different sizes, using slurry feedstock, and mixing different materials) and postprocessing techniques (sintering, chemical reaction, infiltration, and isostatic pressing). Finally, it presents the knowledge gaps in the literature.more » « less
An official website of the United States government

