skip to main content

Title: Structural origin of the high-performance light-emitting InGaN/AlGaN quantum disks
Ternary III-nitride-based nanowires with highly efficient light-emitting properties are essential for a broad range of applications. By using the selective area molecular-beam epitaxy method, InGaN/AlGaN quantum disks (QDs) embedded in hexagonal GaN nanowires were successfully grown. With the help of atomic-scale-resolved transmission electron microscopy and atom probe tomography, atomic ordering and other related structural information, such as crystallography and local chemistry, have been unambiguously revealed to provide unique insights into the exceptionally strong photoluminescence enhancements. A boomerang-shaped InGaN/AlGaN QD was identified, and atomic-level 1 : 1 periodic chemical ordering within the boomerang shaped AlGaN layers along the c -direction was revealed, confirming the preferential site occupation of Al-atoms. This type of growth provides a strong suppression of the quantum-confined Stark effect and is thus likely a very strong contributor to the exceptional properties. This work therefore enables us to directly establish the key structural elements necessary to understand the exceptionally strong emission exhibited by these materials. Optimization of the configurations of QDs could be an alternative design tool for developing various advanced LED device applications with well-designed structure and desirable optical properties.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
8994 to 8999
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Razeghi, Manijeh ; Khodaparast, Giti A. ; Vitiello, Miriam S. (Ed.)
    Band structure, strain, and polarization engineering of nitride heterostructures open unparalleled opportunities for quantum sensing in the infrared. Intersubband absorption and photoluminescence are employed to correlate structure with optical properties of nonpolar strain-balanced InGaN/AlGaN nanostructures grown by molecular-beam epitaxy. Mid-infrared intersubband transitions in m-plane (In)AlxGa1-xN/In0.16Ga0.84N (0.19x0.3) multi-quantum wells were observed for the first time in the range of 3.4-5.1 μm (244-360 meV). Direct and attenuated total-reflection infrared absorption measurements are interpreted using structural information revealed by high-resolution x-ray diffraction and transmission electron microanalysis. The experimental intersubband energies are better reproduced by calculations using the local-density approximation than the Hartree-Fock approximation for the exchange-correlation correction. The effect of charge density, quantum well width, and barrier alloy composition on the intersubband transition energy was examined to evaluate the potential of this material for practical infrared applications. Temperature-dependent continuous-wave and time-resolved photoluminescence (TRPL) measurements are also investigated to probe carrier localization and recombination in m-plane InGaN/AlGaN quantum wells. Average localization depths of 21 meV and 40 meV were estimated for the undoped and doped structures, respectively. Using TRPL, dual localization centers were identified in undoped structures, while a single type of localization centers was found in doped structures. At 2 K, a fast decay time of approximately 0.3ns was measured for both undoped and doped structures, while a longer decay time of 2.2 ns was found only for the undoped sample. TRPL in magnetic field was explored to examine the effect of doping sheets on carrier dynamics. 
    more » « less
  2. Near-infrared electroluminescence of InGaN quantum dots (QDs) formed by controlled growth on photoelectrochemical (PEC) etched QD templates is demonstrated. The QD template consists of PEC InGaN QDs with high density and controlled sizes, an AlGaN capping layer to protect the QDs, and a GaN barrier layer to planarize the surface. Scanning transmission electron microscopy (STEM) of Stranski–Krastanov (SK) growth on the QD template shows high-In-content InGaN QDs that align vertically to the PEC QDs due to localized strain. A high-Al-contentAl0.9Ga0.1Ncapping layer prevents the collapse of the SK QDs due to intermixing or decomposition during higher temperature GaN growth as verified by STEM. Growth of low-temperature (830°C) p-type layers is used to complete the p-n junction and further ensure QD integrity. Finally, electroluminescence shows a significant wavelength shift (800 nm to 500 nm), caused by the SK QDs’ tall height, high In content, and strong polarization-induced electric fields.

    more » « less
  3. Optical properties of InGaN/GaN multi-quantum-well (MQWs) grown on sapphire and on Si(111) are reported. The tensile strain in the MQW on Si is shown to be beneficial for indium incorporation and Quantum-confined Stark Effect reduction in the multi-quantum wells. Raman spectroscopy reveals compressive strains of -0.107% in MQW on sapphire and tensile strain of +0.088% in MQW on Si. Temperature-dependent photoluminescence shows in MQW on sapphire a strong (30 meV peak-to-peak) S-shaped wavelength shift with decreasing temperature (6 K to 300K), whereas MQW on Si luminescence wavelength is stable and red-shifts monotonically. Micro-photoluminescence mapping over 200 by 200 μm2 shows the emission wavelength spatial uniformity of MQW on Si is 2.6 times higher than MQW on sapphire, possibly due to a more uniform indium incorporation in the multi-quantum-wells as a result of the tensile strain in MQW on Si. A positive correlation between emission energy and intensity is observed in MQW on sapphire but not in those on Si. Despite the lower crystal quality of MQW on Si revealed by atomic force microscopy, it exhibits a higher internal quantum efficiency (IQE) than MQW on sapphire from 6 K to 250 K, and equalizes at 300 K. Overall, MQW on Si exhibits a high IQE, higher wavelength spatial uniformity and temperature stability, while providing a much more scalable platform than MQW on sapphire for next generation integrated photonics. 
    more » « less
  4. Abstract

    Due to the increasing desire for nanoscale optoelectronic devices with green light emission capability and high efficiency, ternary III‐N‐based nanorods are extensively studied. Many efforts have been taken on the planar device configuration, which lead to unavoided defects and strains. With selective‐area molecular‐beam epitaxy, new “Russian Doll”‐type InGaN/AlGaN quantum wells (QWs) have been developed, which could largely alleviate this issue. This work combines multiple nanoscale characterization methods and k∙p theory calculations so that the crystalline structure, chemical compositions, strain effects, and light emission properties can be quantitatively correlated and understood. The 3D structure and atomic composition of these QWs are retrieved with transmission electron microscopy and atom probe tomography while their green light emission has been demonstrated with room‐temperature cathodoluminescence experiments. k∙p theory calculations, with the consideration of strain effects, are used to derive the light emission characteristics that are compared with the local measurements. Thus, the structural properties of the newly designed nanorods are quantitatively characterized and the relationship with their outstanding optical properties is described. This combined approach provides an innovative way for analyzing nano‐optical‐devices and new strategies for the structure design of light‐emitting diodes.

    more » « less
  5. We report optically and electrically pumped∼<#comment/>280nmdeep ultraviolet (DUV) light emitting diodes (LEDs) with ultra-thin GaN/AlN quantum disks (QDs) inserted into AlGaN nanorods by selective epitaxial regrowth using molecular beam epitaxy. The GaN/AlN QD LED has shown strong DUV emission distribution on the ordered nanorods and high internal quantum efficiency of 81.2%, as a result of strain release and reduced density of threading dislocations revealed by transmission electron microscopy. Nanorod assembly suppresses the lateral guiding mode of light, and light extraction efficiency can be increased from 14.9% for planar DUV LEDs to 49.6% for nanorod DUV LEDs estimated by finite difference time domain simulations. Presented results offer the potential to solve the issue of external quantum efficiency limitation of DUV LED devices.

    more » « less