- Award ID(s):
- 2004462
- PAR ID:
- 10325265
- Editor(s):
- Razeghi, Manijeh; Khodaparast, Giti A.; Vitiello, Miriam S.
- Date Published:
- Journal Name:
- Proc. SPIE 12009, Quantum Sensing and Nano Electronics and Photonics XVIII
- Page Range / eLocation ID:
- 39
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Temperature-dependent continuous-excitation and time-resolved photoluminescence are studied to probe carrier localization and recombination in nearly strain-balanced m-plane In0.09Ga0.91N/Al0.19Ga0.81N multi-quantum wells grown by plasma-assisted molecular-beam epitaxy. An average localization depth of 21 meV is estimated for the undoped sample. This depth is much smaller than the reported values in polar structures and m-plane InGaN quantum wells. As part of this study, temperature and magnetic field dependence of time-resolved photoluminescence is performed. At 2 K, an initial fast decay time of 0.3 ns is measured for both undoped and doped structures. The undoped sample also exhibits a slow decay component with a time scale of 2.2 ns. The existence of two relaxation paths in the undoped structure can be attributed to different localization centers. The fast relaxation decays are relatively insensitive to external magnetic fields, while the slower relaxation time constant decreases significantly with increasing magnetic fields. The fast decay time scale in the undoped sample is likely due to indium fluctuations in the quantum well. The slow decay time may be related to carrier localization in the barriers. The addition of doping leads to a single fast decay time likely due to stronger exciton localization in the InGaN quantum wells.more » « less
-
Mid-infrared intersubband transitions in strain-balanced m-plane (In)AlxGa1-xN/In0.16Ga0.84N (0.19≤x≤0.3) multi-quantum wells are reported for the first time in the range of 3.4–5.1 µm (244–360 meV). Direct and attenuated total-reflection infrared absorption measurements are interpreted using structural information revealed by high-resolution x-ray diffraction and transmission electron microanalysis. The experimental intersubband energies are better reproduced by calculations using the local-density approximation than the Hartree-Fock approximation for the exchange-correlation correction. The effect of charge density, quantum well width, and barrier alloy composition on the intersubband transition energy is also investigated to evaluate the potential of this material for practical device applications.
-
Wurtzite ScxAl1−xN/GaN (x = 0.13–0.18) multi-quantum wells grown by molecular beam epitaxy on c-plane GaN are found to exhibit remarkably strong and narrow near-infrared intersubband absorption in the technologically important 1.8–2.4 μm range. Band structure simulations reveal that, for GaN wells wider than 3 nm, the quantized energies are set by the steep triangular profile of the conduction band caused by intrinsic polarization fields. As a result, the intersubband transition energies provide unique and direct access to essential ScAlN polarization parameters. Measured infrared absorption indicates that the spontaneous polarization difference of the presumed lattice-matched Sc0.18Al0.82N/GaN heterostructure is smaller than the theoretically calculated value. The intersubband transition energies are relatively insensitive to the barrier alloy composition indicating negligible variation of the net polarization field in the probed 0.13–0.18 Sc composition range.
-
We report a comprehensive study on the effects of rhenium doping on optical properties and photocarrier dynamics of MoS 2 monolayer, few-layer, and bulk samples. Monolayer and few-layer samples of Re-doped (0.6%) and undoped MoS 2 were fabricated by mechanical exfoliation, and were studied by Raman spectroscopy, optical absorption, photoluminescence, and time-resolved differential reflection measurements. Similar Raman, absorption, and photoluminescence spectra were obtained from doped and undoped samples, indicating that the Re doping at this level does not significantly alter the lattice and electronic structures. Red-shift and broadening of the two phonon Raman modes were observed, showing the lattice strain and carrier doping induced by Re. The photoluminescence yield of the doped monolayer is about 15 times lower than that of the undoped sample, while the photocarrier lifetime is about 20 times shorter in the doped monolayer. Both observations can be attributed to diffusion-limited Auger nonradiative recombination of photocarriers at Re dopants. These results provide useful information for developing a doping strategy of MoS 2 for optoelectronic applications.more » « less
-
We reported significant improvements in device speed by reducing the quantum barrier (QB) thicknesses in the InGaN/GaN multiple quantum well (MQW) photodetectors (PDs). A 3-dB bandwidth of 700 MHz was achieved with a reverse bias of -6 V. Carrier escape lifetimes due to carrier trapping in the quantum wells (QWs) were obtained from both simulation and experimental fitting, identifying carrier trapping as the major speed limiting factor in the InGaN/GaN MQW PDs.