skip to main content


Title: Weyl sums and the Lyapunov exponent for the skew-shift Schrödinger cocycle
We study the one-dimensional discrete Schr\"odinger operator with the skew-shift potential $2\lambda \cos\2π(j^2\omega+jy+x)$. This potential is long conjectured to behave like a random one, i.e., it is expected to produce Anderson localization for arbitrarily small coupling constants $\lambda>0$. In this paper, we introduce a novel perturbative approach for studying the zero-energy Lyapunov exponent $L(\lambda)$ at small $\lambda$. Our main results establish that, to second order in perturbation theory, a natural upper bound on $L(\lambda)$ is fully consistent with $L(\lambda)$ being positive and satisfying the usual Figotin-Pastur type asymptotics $L(\lambda)\sim C\lambda^2$ as $\lambda\to 0$. The analogous quantity behaves completely differently in the Almost-Mathieu model, whose zero-energy Lyapunov exponent vanishes for $\lambda<1$. The main technical work consists in establishing good lower bounds on the exponential sums (quadratic Weyl sums) that appear in our perturbation series.  more » « less
Award ID(s):
1800689
NSF-PAR ID:
10105665
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of spectral theory
ISSN:
1664-039X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We obtain new quantitative estimates on Weyl Law remainders under dynamical assumptions on the geodesic flow. On a smooth compact Riemannian manifold ( M ,  g ) of dimension n , let $$\Pi _\lambda $$ Π λ denote the kernel of the spectral projector for the Laplacian, $$\mathbb {1}_{[0,\lambda ^2]}(-\Delta _g)$$ 1 [ 0 , λ 2 ] ( - Δ g ) . Assuming only that the set of near periodic geodesics over $${W}\subset M$$ W ⊂ M has small measure, we prove that as $$\lambda \rightarrow \infty $$ λ → ∞ $$\begin{aligned} \int _{{W}} \Pi _\lambda (x,x)dx=(2\pi )^{-n}{{\,\textrm{vol}\,}}_{_{{\mathbb {R}}^n}}\!(B){{\,\textrm{vol}\,}}_g({W})\,\lambda ^n+O\Big (\frac{\lambda ^{n-1}}{\log \lambda }\Big ), \end{aligned}$$ ∫ W Π λ ( x , x ) d x = ( 2 π ) - n vol R n ( B ) vol g ( W ) λ n + O ( λ n - 1 log λ ) , where B is the unit ball. One consequence of this result is that the improved remainder holds on all product manifolds, in particular giving improved estimates for the eigenvalue counting function in the product setup. Our results also include logarithmic gains on asymptotics for the off-diagonal spectral projector $$\Pi _\lambda (x,y)$$ Π λ ( x , y ) under the assumption that the set of geodesics that pass near both x and y has small measure, and quantitative improvements for Kuznecov sums under non-looping type assumptions. The key technique used in our study of the spectral projector is that of geodesic beams. 
    more » « less
  2. The many-body localised (MBL) to thermal crossover observed in exactdiagonalisation studies remains poorly understood as the accessiblesystem sizes are too small to be in an asymptotic scaling regime.We develop a model of the crossover in short 1D chains in which theMBL phase is destabilised by the formation of many-body resonances.The model reproduces several properties of the numerically observedcrossover, including an apparent correlation length exponent \nu=1 ν = 1 ,exponential growth of the Thouless time with disorder strength, lineardrift of the critical disorder strength with system size, scale-freeresonances, apparent 1/\omega 1 / ω dependence of disorder-averaged spectral functions, and sub-thermalentanglement entropy of small subsystems.In the crossover, resonances induced by a local perturbation are rareat numerically accessible system sizes L L which are smaller than a \lambda λ .For L \gg \sqrt{\lambda} L ≫ λ (in lattice units), resonances typically overlap, and this model doesnot describe the asymptotic transition.The model further reproduces controversial numerical observationswhich Refs. claimed to be inconsistent with MBL. We thus argue that thenumerics to date is consistent with a MBL phase in the thermodynamiclimit. 
    more » « less
  3. Cas Cremers and Engin Kirda (Ed.)
    Vector Oblivious Linear Evaluation (VOLE) supports fast and scalable interactive Zero-Knowledge (ZK) proofs. Despite recent improvements to VOLE-based ZK, compiling proof statements to a control-flow oblivious form (e.g., a circuit) continues to lead to expensive proofs. One useful setting where this inefficiency stands out is when the statement is a disjunction of clauses $\mathcal{L}_1 \lor \cdots \lor \mathcal{L}_B$. Typically, ZK requires paying the price to handle all $B$ branches. Prior works have shown how to avoid this price in communication, but not in computation. Our main result, $\mathsf{Batchman}$, is asymptotically and concretely efficient VOLE-based ZK for batched disjunctions, i.e. statements containing $R$ repetitions of the same disjunction. This is crucial for, e.g., emulating CPU steps in ZK. Our prover and verifier complexity is only $\bigO(RB+R|\C|+B|\C|)$, where $|\C|$ is the maximum circuit size of the $B$ branches. Prior works' computation scales in $RB|\C|$. For non-batched disjunctions, we also construct a VOLE-based ZK protocol, $\mathsf{Robin}$, which is (only) communication efficient. For small fields and for statistical security parameter $\lambda$, this protocol's communication improves over the previous state of the art ($\mathsf{Mac'n'Cheese}$, Baum et al., CRYPTO'21) by up to factor $\lambda$. Our implementation outperforms prior state of the art. E.g., we achieve up to $6\times$ improvement over $\mathsf{Mac'n'Cheese}$ (Boolean, single disjunction), and for arithmetic batched disjunctions our experiments show we improve over $\mathsf{QuickSilver}$ (Yang et al., CCS'21) by up to $70\times$ and over $\mathsf{AntMan}$ (Weng et al., CCS'22) by up to $36\times$. 
    more » « less
  4. Crystalline sheets (e.g., graphene and transition metal dichalcogenides) liberated from a substrate are a paradigm for materials at criticality, because flexural phonons can fluctuate into the third dimension. Although studies of static critical behaviors (e.g., the scale-dependent elastic constants) are plentiful, investigations of dynamics remain limited. Here, we use molecular dynamics to study the time dependence of the midpoint (the height center of mass) of doubly clamped nanoribbons, as prototypical graphene resonators, under a wide range of temperature and strain conditions. By treating the ribbon midpoint as a Brownian particle confined to a nonlinear potential (which assumes a double-well shape beyond the buckling transition), we formulate an effective theory describing the ribbon's transition rate across the two wells and its oscillations inside a given well. We find that, for nanoribbbons compressed above the Euler buckling point and thermalized above a temperature at which the nonlinear effects due to thermal fluctuations become significant, the exponential term (the ratio between energy barrier and temperature) depends only on the geometry but not the temperature, unlike the usual Arrhenius behavior. Moreover, we find that the natural oscillation time for small strain shows a nontrivial scaling τ o ∼ L z 0 T − η / 4 , with L 0 being the ribbon length, z = 2 − η / 2 being the dynamic critical exponent, η = 0.8 being the scaling exponent describing scale-dependent elastic constants, and T being the temperature. These unusual scale- and temperature-dependent dynamics thus exhibit dynamic criticality and could be exploited in the development of graphene-based nanoactuators. 
    more » « less
  5. Abstract

    The radiation of steady surface gravity waves by a uniform stream$$U_{0}$$U0over locally confined (width$$L$$L) smooth topography is analyzed based on potential flow theory. The linear solution to this classical problem is readily found by Fourier transforms, and the nonlinear response has been studied extensively by numerical methods. Here, an asymptotic analysis is made for subcritical flow$$D/\lambda > 1$$D/λ>1in the low-Froude-number ($$F^{2} \equiv \lambda /L \ll 1$$F2λ/L1) limit, where$$\lambda = U_{0}^{2} /g$$λ=U02/gis the lengthscale of radiating gravity waves and$$D$$Dis the uniform water depth. In this regime, the downstream wave amplitude, although formally exponentially small with respect to$$F$$F, is determined by a fully nonlinear mechanism even for small topography amplitude. It is argued that this mechanism controls the wave response for a broad range of flow conditions, in contrast to linear theory which has very limited validity.

     
    more » « less