A bstract In order to study the chaotic behavior of a system with non-local interactions, we will consider weakly coupled non-commutative field theories. We compute the Lyapunov exponent of this exponential growth in the large Moyal-scale limit to leading order in the t’Hooft coupling and 1/ N . We found that in this limit, the Lyapunov exponent remains comparable in magnitude to (and somewhat smaller than) the exponent in the commutative case. This can possibly be explained by the infrared sensitivity of the Lyapunov exponent. Another possible explanation is that in examples of weakly coupled non-commutative field theories, non-local contributions to various thermodynamic quantities are sub-dominant.
more »
« less
Exploring the role of diffusive coupling in spatiotemporal chaos
We explore the chaotic dynamics of a large one-dimensional lattice of coupled maps with diffusive coupling of varying strength using the covariant Lyapunov vectors (CLVs). Using a lattice of diffusively coupled quadratic maps, we quantify the growth of spatial structures in the chaotic dynamics as the strength of diffusion is increased. When the diffusion strength is increased from zero, we find that the leading Lyapunov exponent decreases rapidly from a positive value to zero to yield a small window of periodic dynamics which is then followed by chaotic dynamics. For values of the diffusion strength beyond the window of periodic dynamics, the leading Lyapunov exponent does not vary significantly with the strength of diffusion with the exception of a small variation for the largest diffusion strengths we explore. The Lyapunov spectrum and fractal dimension are described analytically as a function of the diffusion strength using the eigenvalues of the coupling operator. The spatial features of the CLVs are quantified and compared with the eigenvectors of the coupling operator. The chaotic dynamics are composed entirely of physical modes for all of the conditions we explore. The leading CLV is highly localized and localization decreases with increasing strength of the spatial coupling. The violation of the dominance of Oseledets splitting indicates that the entanglement of pairs of CLVs becomes more significant between neighboring CLVs as the strength of diffusion is increased.
more »
« less
- Award ID(s):
- 2138055
- PAR ID:
- 10574542
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Chaos: An Interdisciplinary Journal of Nonlinear Science
- Volume:
- 34
- Issue:
- 10
- ISSN:
- 1054-1500
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the one-dimensional discrete Schr\"odinger operator with the skew-shift potential $$2\lambda \cos\2π(j^2\omega+jy+x)$$. This potential is long conjectured to behave like a random one, i.e., it is expected to produce Anderson localization for arbitrarily small coupling constants $$\lambda>0$$. In this paper, we introduce a novel perturbative approach for studying the zero-energy Lyapunov exponent $$L(\lambda)$$ at small $$\lambda$$. Our main results establish that, to second order in perturbation theory, a natural upper bound on $$L(\lambda)$$ is fully consistent with $$L(\lambda)$$ being positive and satisfying the usual Figotin-Pastur type asymptotics $$L(\lambda)\sim C\lambda^2$$ as $$\lambda\to 0$$. The analogous quantity behaves completely differently in the Almost-Mathieu model, whose zero-energy Lyapunov exponent vanishes for $$\lambda<1$$. The main technical work consists in establishing good lower bounds on the exponential sums (quadratic Weyl sums) that appear in our perturbation series.more » « less
-
Abstract We consider one-dimensional quasi-periodic Schrödinger operators with analytic potentials. In the positive Lyapunov exponent regime, we prove large deviation estimates, which lead to refined Hölder continuity of the Lyapunov exponents and the integrated density of states, in both small Lyapunov exponent and large coupling regimes. Our results cover all the Diophantine frequencies and some Liouville frequencies.more » « less
-
We consider one-dimensional quasi-periodic Schr\"odinger operators with analytic potentials. In the positive Lyapunov exponent regime, we prove large deviation estimates which lead to refined H\"older continuity of the Lyapunov exponents and the integrated density of states, in both small Lyapunov exponent and large coupling regimes. Our results cover all the Diophantine frequencies and some Liouville frequencies.more » « less
-
We consider the top Lyapunov exponent associated to a dissipative linear evolution equation posed on a separable Hilbert or Banach space. In many applications in partial differential equations, such equations are often posed on a scale of nonequivalent spaces mitigating, e.g., integrability (L^p) or differentiability (W^{s,p}). In contrast to finite dimensions, the Lyapunov exponent could a priori depend on the choice of norm used. In this paper we show that under quite general conditions, the Lyapunov exponent of a cocycle of compact linear operators is independent of the norm used. We apply this result to two important problems from fluid mechanics: the enhanced dissipation rate for the advection diffusion equation with ergodic velocity field; and the Lyapunov exponent for the 2d Navier–Stokes equations with stochastic or periodic forcing.more » « less
An official website of the United States government

