- Award ID(s):
- 1900519
- PAR ID:
- 10433795
- Date Published:
- Journal Name:
- Inventiones mathematicae
- Volume:
- 232
- Issue:
- 3
- ISSN:
- 0020-9910
- Page Range / eLocation ID:
- 1195 to 1272
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract The duality principle for group representations developed in Dutkay et al. (J Funct Anal 257:1133–1143, 2009), Han and Larson (Bull Lond Math Soc 40:685–695, 2008) exhibits a fact that the well-known duality principle in Gabor analysis is not an isolated incident but a more general phenomenon residing in the context of group representation theory. There are two other well-known fundamental properties in Gabor analysis: the biorthogonality and the fundamental identity of Gabor analysis. The main purpose of this this paper is to show that these two fundamental properties remain to be true for general projective unitary group representations. Moreover, we also present a general duality theorem which shows that that muti-frame generators meet super-frame generators through a dual commutant pair of group representations. Applying it to the Gabor representations, we obtain that $$\{\pi _{\Lambda }(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda }(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ ( m , n ) g k } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})\oplus \cdots \oplus L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) ⊕ ⋯ ⊕ L 2 ( R d ) if and only if $$\cup _{i=1}^{k}\{\pi _{\Lambda ^{o}}(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ o ( m , n ) g i } m , n ∈ Z d is a Riesz sequence, and $$\cup _{i=1}^{k} \{\pi _{\Lambda }(m, n)g_{i}\}_{m, n\in {\mathbb {Z}}^{d}}$$ ∪ i = 1 k { π Λ ( m , n ) g i } m , n ∈ Z d is a frame for $$L^{2}({\mathbb {R}}\,^{d})$$ L 2 ( R d ) if and only if $$\{\pi _{\Lambda ^{o}}(m, n)g_{1} \oplus \cdots \oplus \pi _{\Lambda ^{o}}(m, n)g_{k}\}_{m, n \in {\mathbb {Z}}^{d}}$$ { π Λ o ( m , n ) g 1 ⊕ ⋯ ⊕ π Λ o ( m , n ) g k } m , n ∈ Z d is a Riesz sequence, where $$\pi _{\Lambda }$$ π Λ and $$\pi _{\Lambda ^{o}}$$ π Λ o is a pair of Gabor representations restricted to a time–frequency lattice $$\Lambda $$ Λ and its adjoint lattice $$\Lambda ^{o}$$ Λ o in $${\mathbb {R}}\,^{d}\times {\mathbb {R}}\,^{d}$$ R d × R d .more » « less
-
Abstract The multihadron decays $$ {\Lambda}_b^0 $$ Λ b 0 → D + pπ−π− and $$ {\Lambda}_b^0 $$ Λ b 0 → D * + pπ−π− are observed in data corresponding to an integrated luminosity of 3 fb − 1 , collected in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV by the LHCb detector. Using the decay $$ {\Lambda}_b^0 $$ Λ b 0 → $$ {\Lambda}_c^{+} $$ Λ c + π + π − π − as a normalisation channel, the ratio of branching fractions is measured to be $$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {\Lambda}_c^0{\pi}^{+}{\pi}^{-}{\pi}^{-}\right)}\times \frac{\mathcal{B}\left({D}^{+}\to {K}^{-}{\pi}^{+}{\pi}^{+}\right)}{\mathcal{B}\left({\Lambda}_c^0\to {pK}^{-}{\pi}^{-}\right)}=\left(5.35\pm 0.21\pm 0.16\right)\%, $$ B Λ b 0 → D + p π − π − B Λ b 0 → Λ c 0 π + π − π − × B D + → K − π + π + B Λ c 0 → pK − π − = 5.35 ± 0.21 ± 0.16 % , where the first uncertainty is statistical and the second systematic. The ratio of branching fractions for the $$ {\Lambda}_b^0 $$ Λ b 0 → D *+ pπ − π − and $$ {\Lambda}_b^0 $$ Λ b 0 → D + pπ − π − decays is found to be $$ \frac{\mathcal{B}\left({\Lambda}_b^0\to {D}^{\ast +}p{\pi}^{-}{\pi}^{-}\right)}{\mathcal{B}\left({\Lambda}_b^0\to {D}^{+}p{\pi}^{-}{\pi}^{-}\right)}\times \left(\mathcal{B}\left({D}^{\ast +}\to {D}^{+}{\pi}^0\right)+\mathcal{B}\left({D}^{\ast +}\to {D}^{+}\gamma \right)\right)=\left(61.3\pm 4.3\pm 4.0\right)\%. $$ B Λ b 0 → D ∗ + p π − π − B Λ b 0 → D + p π − π − × B D ∗ + → D + π 0 + B D ∗ + → D + γ = 61.3 ± 4.3 ± 4.0 % .more » « less
-
A bstract We present the first measurement of the branching fraction of the singly Cabibbo-suppressed (SCS) decay $$ {\Lambda}_c^{+} $$ Λ c + → pη ′ with η ′ → ηπ + π − , using a data sample corresponding to an integrated luminosity of 981 fb − 1 , collected by the Belle detector at the KEKB e + e − asymmetric-energy collider. A significant $$ {\Lambda}_c^{+} $$ Λ c + → pη ′ signal is observed for the first time with a signal significance of 5.4 σ . The relative branching fraction with respect to the normalization mode $$ {\Lambda}_c^{+} $$ Λ c + → pK − π + is measured to be $$ \frac{\mathcal{B}\left({\Lambda}_c^{+}\to p\eta^{\prime}\right)}{\mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right)}=\left(7.54\pm 1.32\pm 0.73\right)\times {10}^{-3}, $$ B Λ c + → pη ′ B Λ c + → pK − π + = 7.54 ± 1.32 ± 0.73 × 10 − 3 , where the uncertainties are statistical and systematic, respectively. Using the world-average value of $$ \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) $$ B Λ c + → pK − π + = (6 . 28 ± 0 . 32) × 10 − 2 , we obtain $$ \mathcal{B}\left({\Lambda}_c^{+}\to p\eta^{\prime}\right)=\left(4.73\pm 0.82\pm 0.46\pm 0.24\right)\times {10}^{-4}, $$ B Λ c + → pη ′ = 4.73 ± 0.82 ± 0.46 ± 0.24 × 10 − 4 , where the uncertainties are statistical, systematic, and from $$ \mathcal{B}\left({\Lambda}_c^{+}\to {pK}^{-}{\pi}^{+}\right) $$ B Λ c + → pK − π + , respectively.more » « less
-
null (Ed.)Given integers $g,n\geqslant 0$ satisfying $2-2g-n<0$ , let ${\mathcal{M}}_{g,n}$ be the moduli space of connected, oriented, complete, finite area hyperbolic surfaces of genus $g$ with $n$ cusps. We study the global behavior of the Mirzakhani function $B:{\mathcal{M}}_{g,n}\rightarrow \mathbf{R}_{{\geqslant}0}$ which assigns to $X\in {\mathcal{M}}_{g,n}$ the Thurston measure of the set of measured geodesic laminations on $X$ of hyperbolic length ${\leqslant}1$ . We improve bounds of Mirzakhani describing the behavior of this function near the cusp of ${\mathcal{M}}_{g,n}$ and deduce that $B$ is square-integrable with respect to the Weil–Petersson volume form. We relate this knowledge of $B$ to statistics of counting problems for simple closed hyperbolic geodesics.more » « less
-
Abstract Let $f(z) = \sum_{n=1}^\infty a_f(n)q^n$ be a holomorphic cuspidal newform with even integral weight $k\geq 2$, level N, trivial nebentypus and no complex multiplication. For all primes p, we may define $\theta_p\in [0,\pi]$ such that $a_f(p) = 2p^{(k-1)/2}\cos \theta_p$. The Sato–Tate conjecture states that the angles θp are equidistributed with respect to the probability measure $\mu_{\textrm{ST}}(I) = \frac{2}{\pi}\int_I \sin^2 \theta \; d\theta$, where $I\subseteq [0,\pi]$. Using recent results on the automorphy of symmetric power L-functions due to Newton and Thorne, we explicitly bound the error term in the Sato–Tate conjecture when f corresponds to an elliptic curve over $\mathbb{Q}$ of arbitrary conductor or when f has square-free level. In these cases, if $\pi_{f,I}(x) := \#\{p \leq x : p \nmid N, \theta_p\in I\}$ and $\pi(x) := \# \{p \leq x \}$, we prove the following bound: $$ \left| \frac{\pi_{f,I}(x)}{\pi(x)} - \mu_{\textrm{ST}}(I)\right| \leq 58.1\frac{\log((k-1)N \log{x})}{\sqrt{\log{x}}} \qquad \text{for} \quad x \geq 3. $$ As an application, we give an explicit bound for the number of primes up to x that violate the Atkin–Serre conjecture for f.