skip to main content


Title: Adaptive filtering of physical-virtual artifacts for synthetic animatronics
Spatial Augmented Reality (SAR), e.g., based on monoscopic projected imagery on physical three-dimensional (3D) surfaces, can be particularly well-suited for ad hoc group or multi-user augmented reality experiences since it does not encumber users with head-worn or carried devices. However, conveying a notion of realistic 3D shapes and movements on SAR surfaces using monoscopic imagery is a difficult challenge. While previous work focused on physical actuation of such surfaces to achieve geometrically dynamic content, we introduce a different concept, which we call “Synthetic Animatronics,” i.e., conveying geometric movement or deformation purely through manipulation of the imagery being shown on a static display surface. We present a model for the distribution of the viewpoint-dependent distortion that occurs when there are discrepancies between the physical display surface and the virtual object being represented, and describe a realtime implementation for a method of adaptively filtering the imagery based on an approximation of expected potential error. Finally, we describe an existing physical SAR setup well-suited for synthetic animatronics and a corresponding Unity-based SAR simulator allowing for flexible exploration and validation of the technique and various parameters.  more » « less
Award ID(s):
1800961 1564065
NSF-PAR ID:
10105837
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Artificial Reality and Telexistence and Eurographics Symposium on Virtual Environments
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract— Navigation, the ability to relocate from one place to another, is a critical skill for any individual or group. Navigating safely across unknown environments is a critical factor in determining the success of a mission. While there is an existing body of applications in the field of land navigation, they primarily rely on GPS-enabled technologies. Moreover, there is limited research on Augmented Reality (AR) as a tool for navigation in unknown environments. This research proposes to develop an AR system to provide 3-dimensional (3D) navigational insights in unfamiliar environments. This can be accomplished by generating 3D terrestrial maps leveraging Synthetic Aperture Radar (SAR) data, Google earth imagery and sparse knowledge of GPS coordinates of the region. Furthermore, the 3D terrestrial images are converted to navigational meshes to make it feasible for path-finding algorithms to work. The proposed method can be used to create an iteratively refined 3D landscape knowledge-database that can assist personnel in navigating novel environments or assist in mission planning for other operations. It can also be used to help plan/access the best strategic vantage points in the landscape. Keywords— navigation, three-dimensional, image processing, mesh, augmented reality, mixed reality, SAR, GPS 
    more » « less
  2. Economically disadvantaged youth residing in mountain tourist communities represent an important and understudied rural population. These communities typically include a large percentage of children that are English language learners. Our NSF STEM Career Connections project, A Model for Preparing Economically-Disadvantaged Rural Youth for the Future STEM Workplace, investigates strategies that help middle school youth in these communities to envision a broader range of workforce opportunities, especially in STEM and computing careers. This poster highlights the initial findings of an innovative model that involves working with local schools and community partners to support the integration of local career contexts, engineering phenomena, 3D printing technologies, career connections, and mentorship into formal educational experiences to motivate and prepare rural youth for future STEM careers. We focus on select classrooms at two middle schools and describe the implementation of a novel 3D printing curriculum during the 2020-2021 school-year. Two STEM teachers implemented the five-week curriculum with approximately 300 students per quarter. To create a rich inquiry-driven learning environment, the curriculum uses an instructional design approach called storylining. This approach is intended to promote coherence, relevance, and meaning from the students’ perspectives by using students’ questions to drive investigations and lessons. Students worked towards answering the question: “How can we support animals with physical disabilities so they can perform daily activities independently?” Students engaged in the engineering design process by defining, developing, and optimizing solutions to develop and print prosthetic limbs for animals with disabilities using 3D modeling, a unique augmented reality application, and 3D printing. In order to embed connections to STEM careers and career pathways, some students received mentorship and guidance from local STEM professionals who work in related fields. This poster will describe the curriculum and its implementation across two quarters at two middle schools in the US rural mountain west, as well as the impact on students’ interest in STEM and computing careers. During the first quarter students engaged in the 3D printing curriculum, but did not have access to the STEM career and career pathway connections mentorship piece. During the second quarter, the project established a partnership with a local STEM business -- a medical research institute that utilizes 3D printing and scanning for creating human surgical devices and procedures -- to provide mentorship to the students. Volunteers from this institute served as ongoing mentors for the students in each classroom during the second quarter. The STEM mentors guided students through the process of designing, testing, and optimizing their 3D models and 3D printed prosthetics, providing insights into how students’ learning directly applies to the medical industry. Different forms of student data such as cognitive interviews and pre/post STEM interest and spatial thinking surveys were collected and analyzed to understand the benefits of the career connections mentorship component. Preliminary findings suggest the relationship between local STEM businesses and students is important to motivate youth from rural areas to see themselves being successful in STEM careers and helping them to realize the benefits of engaging with emerging engineering technologies. 
    more » « less
  3. This paper explains the design of a prototype desktop and augmented Virtual Reality (VR) framework as a medium to deliver instructional materials to the students in an introductory computer animation course. This framework was developed as part of a Teaching Innovation Grant to propose a cost-effective and innovative instructional frameworks to engage and stimulate students. Desktop-based virtual reality presents a 3-dimensional (3D) world using the display of a standard desktop computer available in most of the PC labs on campus. This is a required course at this university that has students not only from the primary department, but from other colleges/departments as well. Desktop VR has been chosen as a medium for this study due to the ease-of-access and affordability; this framework can be visualized and accessed with the available computers in PC labs available in university campuses. The proposed research is intended to serve as a low-cost framework that can be accessed by all students. The concepts of ‘computer graphics, modeling & animation’, instead of being presented using conventional methods such as notes or power point presentations, are presented in an interactive manner on a desktop display. This framework allows the users to interact with the objects on the display not only via the standard mouse and keyboard, but also using multiple forms of HCI such as Touchscreen, Touchpad, and 3D Mouse. Hence, the modules were developed from scratch for access via regular desktop PCs. Such a framework helps effective pedagogical strategies such as active learning (AL) and project-based learning (PBL), which are especially relevant to a highly lab-oriented course such as this course titled ‘Introduction to Animation’. Finally, the framework has also been tested on a range of VR media to check its accessibility. On the whole, this proposed framework can be used to not only teach basic modeling and animation concepts such as spatial coordinates, coordinate systems, transformation, and parametric curves, but it is also used to teach basic graphics programming concepts. Hence, instead of a touchscreen, the modules have to be developed from scratch for access via regular desktop PCs. Such a framework helps effective pedagogical strategies such as active learning (AL) and project-based learning (PBL), which are especially relevant to a highly lab-oriented course such as this animation course. 
    more » « less
  4. Abstract

    Successful surgical operations are characterized by preplanning routines to be executed during actual surgical operations. To achieve this, surgeons rely on the experience acquired from the use of cadavers, enabling technologies like virtual reality (VR) and clinical years of practice. However, cadavers, having no dynamism and realism as they lack blood, can exhibit limited tissue degradation and shrinkage, while current VR systems do not provide amplified haptic feedback. This can impact surgical training increasing the likelihood of medical errors. This work proposes a novel Mixed Reality Combination System (MRCS) that pairs Augmented Reality (AR) technology and an inertial measurement unit (IMU) sensor with 3D printed, collagen-based specimens that can enhance task performance like planning and execution. To achieve this, the MRCS charts out a path prior to a user task execution based on a visual, physical, and dynamic environment on the state of a target object by utilizing surgeon-created virtual imagery that, when projected onto a 3D printed biospecimen as AR, reacts visually to user input on its actual physical state. This allows a real-time user reaction of the MRCS by displaying new multi-sensory virtual states of an object prior to performing on the actual physical state of that same object enabling effective task planning. Tracked user actions using an integrated 9-Degree of Freedom IMU demonstrate task execution This demonstrates that a user, with limited knowledge of specific anatomy, can, under guidance, execute a preplanned task. In addition, to surgical planning, this system can be generally applied in areas such as construction, maintenance, and education.

     
    more » « less
  5. In this paper, we explore how a familiarly shaped object can serve as a physical proxy to manipulate virtual objects in Augmented Reality (AR) environments. Using the example of a tangible, handheld sphere, we demonstrate how irregularly shaped virtual objects can be selected, transformed, and released. After a brief description of the implementation of the tangible proxy, we present a buttonless interaction technique suited to the characteristics of the sphere. In a user study (N = 30), we compare our approach with three different controller-based methods that increasingly rely on physical buttons. As a use case, we focused on an alignment task that had to be completed in mid-air as well as on a flat surface. Results show that our concept has advantages over two of the controller-based methods regarding task completion time and user ratings. Our findings inform research on integrating tangible interaction into AR experiences. 
    more » « less