- PAR ID:
- 10105955
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 54
- Issue:
- 56
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 7818 to 7821
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Achieving a mesoporous structure in superinsulation materials is pivotal for guaranteeing a harmonious relationship between low thermal conductivity, high porosity, and low density. Herein, we report silica-based cryogel and aerogel materials by implementing freeze-drying and ambient-pressure-drying processes respectively. The obtained freeze-dried cryogels yield thermal conductivity of 23 mW m −1 K −1 , with specific surface area of 369.4 m 2 g −1 , and porosity of 96.7%, whereas ambient-pressure-dried aerogels exhibit thermal conductivity of 23.6 mW m −1 K −1 , specific surface area of 473.8 m 2 g −1 , and porosity of 97.4%. In addition, the fiber-reinforced nanocomposites obtained via freeze-drying feature a low thermal conductivity (28.0 mW m −1 K −1 ) and high mechanical properties (∼620 kPa maximum compressive stress and Young's modulus of 715 kPa), coupled with advanced flame-retardant capabilities, while the composite materials from the ambient pressure drying process have thermal conductivity of 28.8 mW m −1 K −1 , ∼200 kPa maximum compressive stress and Young's modulus of 612 kPa respectively. The aforementioned results highlight the capabilities of both drying processes for the development of thermal insulation materials for energy-efficient applications.more » « less
-
Background: DJ-1 is a protein whose mutation causes rare heritable forms of Parkinson’s disease (PD) and is of interest as a target for treating PD and other disorders. This work used high performance affinity microcolumns to screen and examine the binding of small molecules to DJ-1, as could be used to develop new therapeutics or to study the role of DJ-1 in PD. Non-covalent entrapment was used to place microgram quantities of DJ-1 in an unmodified form within microcolumns, which were then used in multiple studies to analyze binding by model compounds and possible drug candidates to DJ-1. Results: Several factors were examined in optimizing the entrapment method, including the addition of a reducing agent to maintain a reduced active site cysteine residue in DJ-1, the concentration of DJ-1 employed, and the entrapment times. Isatin was used as a known binding agent (dissociation constant, ~2.0 µM) and probe for DJ-1 activity. This compound gave good retention on 2.0 cm × 2.1 mm inner diameter DJ-1 microcolumns made under the final entrapment conditions, with a typical retention factor of 14 and elution in ~8 min at 0.50 mL/min. These DJ-1 microcolumns were used to evaluate the binding of small molecules that were selected in silico to bind or not to bind DJ-1. A compound predicted to have good binding with DJ-1 gave a retention factor of 122, an elution time of ~15 min at 0.50 mL/min, and an estimated dissociation constant for this protein of 0.5 µM. Significance: These chromatographic tools can be used in future work to screen additional possible binding agents for DJ-1 or adapted for examining drug candidates for other proteins. This work represents the first time protein entrapment has been deployed with DJ-1, and it is the first experimental confirmation of binding to DJ-1 by a small lead compound selected in silico.more » « less
-
The known compound K[( PO ) 2 Mn(CO) 2 ] ( PO = 2-((diphenylphosphino)methyl)-4,6-dimethylphenolate) (K[ 1 ]) was protonated to form the new Mn( i ) complex ( HPO )( PO )Mn(CO) 2 ( H 1 ) and was determined to have a p K a approximately equal to tetramethylguanidine (TMG). The reduction potential of K[ 1 ] was determined to be −0.58 V vs. Fc/Fc + in MeCN and allowed for an estimation of an experimental O–H bond dissociation free energy (BDFE O–H ) of 73 kcal mol −1 according to the Bordwell equation. This value is in good agreement with a corrected DFT computed BDFE O–H of 68.0 kcal mol −1 (70.3 kcal mol −1 for intramolecular H-bonded isomer). The coordination of the protonated O-atom in the solid-state H 1 was confirmed using FTIR spectroscopy and X-ray crystallography. The phenol moiety is hemilabile as evident from computation and experimental results. For instance, dissociation of the protonated O-atom in H 1 is endergonic by only a few kcal mol −1 (DFT). Furthermore, [ 1 ] − and other Mn( i ) compounds coordinated to PO and/or HPO do not react with MeCN, but H 1 reacts with MeCN to form H 1 + MeCN . Experimental evidence for the solution-bound O-atoms of H 1 was obtained from 1 H NMR and UV-vis spectroscopy and by comparing the electronic spectra of bona fide 16-e − Mn( i ) complexes such as [{ PNP }Mn(CO) 2 ] ( PNP = − N{CH 2 CH 2 (P i Pr 2 )} 2 ) and [( Me3SiOP )( PO )Mn(CO) 2 ] ( Me3Si 1 ). Compound H 1 is only meta-stable ( t 1/2 0.5–1 day) and decomposes into products consistent with homolytic O–H bond cleavage. For instance, treatment of H 1 with TEMPO resulted in formation of TEMPOH, free ligand, and [Mn II {( PO ) 2 Mn(CO) 2 } 2 ]. Together with the experimental and calculated weakened BDFE O–H , these data provide strong evidence for the coordination and hemilability of the protonated O-atom in H 1 and represents the first example of the phenolic Mn( i )–O linkage and a rare example of a “soft-homolysis” intermediate in the bond-weakening catalysis paradigm.more » « less
-
X-ray detectors are commonly used for medical, crystallography and space physics applications. Most of the current x-ray detectors use cadmium zinc telluride (CZT) as the active medium. This report investigates high density semiconducting and scintillating glasses as potential alternatives to CZT. For the semiconducting glasses, samples composed of xCuO–((1−x)/2)PbO–((1−x)/2)V2O5 and xFeO–((1−x)/2)PbO–((1−x)/2)V2O5, for the scintillating glasses, samples composed of xGd2O3+yWO3+(1−x−y)2H3BO3, doped with 1–6% Eu3+ or Tb3+, were investigated in this study. The glass-making conditions, density, Raman spectroscopy analysis, photoluminescence excitation and emission spectra, as well as conductivity measurements performed on various samples, are reported. The interaction of x-rays with all the glass samples was simulated using GATE software, and their mass attenuation coefficients were calculated and compared with CZT.
-
null (Ed.)Heavy metal ions are highly toxic and widely spread as environmental pollutants. This work reports the development of two novel chelating adsorbents, based on the chemical modifications of graphene oxide and zirconium phosphate by functionalization with melamine-based chelating ligands for the effective and selective extraction of Hg( ii ) and Pb( ii ) from contaminated water sources. The first adsorbent melamine, thiourea-partially reduced graphene oxide (MT-PRGO) combines the heavier donor atom sulfur with the amine and triazine nitrogen's functional groups attached to the partially reduced GO nanosheets to effectively capture Hg( ii ) ions from water. The MT-PRGO adsorbent shows high efficiency for the extraction of Hg( ii ) with a capacity of 651 mg g −1 and very fast kinetics resulting in a 100% removal of Hg( ii ) from 500 ppb and 50 ppm concentrations in 15 second and 30 min, respectively. The second adsorbent, melamine zirconium phosphate (M-ZrP), is designed to combine the amine and triazine nitrogen's functional groups of melamine with the hydroxyl active sites of zirconium phosphate to effectively capture Pb( ii ) ions from water. The M-ZrP adsorbent shows exceptionally high adsorption affinity for Pb( ii ) with a capacity of 681 mg g −1 and 1000 mg g −1 using an adsorbent dose of 1 g L −1 and 2 g L −1 , respectively. The high adsorption capacity is also coupled with fast kinetics where the equilibrium time required for the 100% removal of Pb( ii ) from 1 ppm, 100 ppm and 1000 ppm concentrations is 40 seconds, 5 min and 30 min, respectively using an adsorbent dose of 1 g L −1 . In a mixture of six heavy metal ions at a concentration of 10 ppm, the removal efficiency is 100% for Pb( ii ), 99% for Hg( ii ), Cd( ii ) and Zn( ii ), 94% for Cu( ii ), and 90% for Ni( ii ) while at a higher concentration of 250 ppm the removal efficiency for Pb( ii ) is 95% compared to 23% for Hg( ii ) and less than 10% for the other ions. Because of the fast adsorption kinetics, high removal capacity, excellent regeneration, stability and reusability, the MT-PRGO and M-ZrP are proposed as top performing remediation adsorbents for the solid phase extraction of Hg( ii ) and Pb( ii ), respectively from contaminated water.more » « less