In functionally graded materials (FGMs) fabricated using directed energy deposition (DED) additive manufacturing (AM), cracks may form due to interdendritic stress during solidification, the formation of deleterious phases, or the buildup of residual stresses. This study builds on our previously proposed concept of FGM feasibility diagrams to identify gradient pathways that avoid deleterious phases in FGMs by also considering hot cracking. Here, five hot cracking criteria were integrated into the feasibility diagrams, and equilibrium simulations were carried out based on Scheil results (termed hybrid Scheil-equilibrium simulation) to predict phase formation below the solidus temperature considering solidification micro-segregation. The new feasibility diagrams were applied to four previously studied FGMs, and the newly proposed approach predicted high crack susceptibility, detrimental phase formation, or interdendritic BCC phase formation in the experimentally observed cracking region. This demonstrates the utility of the proposed framework for crack prediction in the design of future FGMs gradient pathways. 
                        more » 
                        « less   
                    
                            
                            Effect of nitrogen on solidification cracking resistance in ERNiCr-3 weld metal
                        
                    
    
            Additions of nitrogen were made to ERNiCr-3 (FM 82) weld metal to investigate the effect on weld metal microstructure and solidification cracking susceptibility. Weld samples were prepared with different argon-nitrogen shielding gas mixtures to produce nitrogen variations in the weld metal. The cast pin tear test (CPTT) was then used to evaluate solidification cracking susceptibility as a function of weld metal nitrogen content. Phase fraction and composition of constituents in the final solidification microstructure were characterized via optical and electron microscopy. Thermodynamic (Scheil) calculations were performed to determine the phase formation during solidification, associated solidification path, and solidification temperature range. Solidification cracking susceptibility was found to increase significantly with increasing nitrogen content. The overall amount of second phase in the solidified microstructure increased when nitrogen was added to the weld metal. Small skeletal constituents in the interdendritic regions, primarily Nb-rich carbides (NbC), were more frequently observed with increasing weld metal nitrogen content. Larger cuboidal Ti-rich nitrides (TiN) and carbonitrides (Ti, Nb)(N, C) were found only when nitrogen was added to the weld metal. Their location in dendrite core regions indicates formation during an earlier stage of the solidification process. Scheil calculations confirmed the strong effect of nitrogen additions on the amount and sequence of phase formation during solidification of ERNiCr-3 weld metal. High nitrogen levels ( 100 ppm) facilitate primary nitride formation prior to the solidification of the gamma () dendrites, and increase the amount of phase constituents in the solidification microstructure. The presence of nitrogen also shifts the start of the eutectic /NbC formation at the end of solidification to lower temperatures, which results in an increase in the solidification temperature range. This occurs at much lower nitrogen levels ( 25 ppm) and correlates with the observed increase in solidification cracking susceptibility. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1822144
- PAR ID:
- 10106163
- Date Published:
- Journal Name:
- Welding journal
- Volume:
- 97
- Issue:
- 8
- ISSN:
- 0372-7203
- Page Range / eLocation ID:
- 3411-3418
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Refractory complex concentrated alloys (RCCAs) show potential as the next-generation structural materials due to their superior strength in extreme environments. However, RCCAs processed by metal additive manufacturing (AM) typically suffer from process-related challenges surrounding laser material interaction defects and microstructure control. Multimodalin situtechniques (synchrotron X-ray imaging and diffraction and infrared imaging) and melt pool-level simulations were employed to understand rapid solidification pathways in two representative RCCAs: (i) multi-phase BCC + HCP Ti0.4Zr0.4Nb0.1Ta0.1and (ii) single-phase BCC Ti0.486V0.375Cr0.111Ta0.028. As expected, laser material interaction defects followed similar systematic trends in process parameter space for both alloys. Additionally, both alloys formed a single-phase (BCC) microstructure after rapid solidification processing. However, significant differences in microstructure selection between these alloys were discovered, where Ti0.4Zr0.4Nb0.1Ta0.1showed a mixture of equiaxed and columnar grains, while Ti0.486V0.375Cr0.111Ta0.028was dominated by columnar growth. These behaviors were well described by the influence of undercooling effects on columnar-to-equiaxed transition (CET). Distinct microstructure formation in each alloy was verified through CET predictions via analytical melt pool simulations, which showed a ~ 5 × increase degrees in undercooling for Ti0.4Zr0.4Nb0.1Ta0.1compared to Ti0.486V0.375Cr0.111Ta0.028. Overall, these results show that microstructure control based on modulating the freezing range must be balanced with process considerations which resist defect formation, such as solidification crack formation in RCCAs. Graphical abstractmore » « less
- 
            The use of laser powder bed fusion (LPBF) for faster and more customized manufacturing has grown significantly. However, LPBF parts often require welding to other components, raising concerns about their weldability due to differences in microstructure compared to conventionally manufactured parts. Despite its importance, research on the weldability of additive manufacturing materials remains limited. This study aims to evaluate the susceptibility of LPBF 316L stainless steel to weld solidification cracking using transverse varestraint testing and compare results with conventional 316L. Tests were conducted across strain levels from 0.5 to 7%, revealing a saturated strain of 4%, with maximum crack length (MCL), maximum crack distance (MCD), and total number of cracks (TNC) of approximately 0.36 mm and 31, respectively. Compared to existing literature, LPBF 316L produced with optimized printing parameters and low nickel equivalent content exhibited higher resistance to weld solidification cracking, reflected in lower MCL and MCD values. Cracks initiated at the solidus interface and propagated along the ferrite–austenite boundary under strain. Microstructural changes were observed after testing, transitioning from cellular austenitic solidification in LPBF to a skeletal ferrite-austenitic mode due to material remelting and slower cooling rates. These findings highlight that reduced nickel equivalent, alongside optimized printing parameters, contribute to enhanced weld solidification cracking resistance in LPBF 316L. This study advances understanding of the weldability of LPBF materials.more » « less
- 
            Nickel-based alloys, Alloys 625 and 718, are widely used in the aerospace industry due to their excellent corrosion resistance and high strength at elevated temperatures. Recently, these alloys have been utilized to manufacture rocket engine components using additive manufacturing (AM) technologies such as laser powder bed fusion (LPBF) and powder-blown laser-based directed energy deposition (DED). These technologies offer faster and more cost-effective production while enabling the fabrication of near-net-shape parts that are subsequently joined by welding. However, solidification cracking susceptibility varies significantly between AM and conventionally processed materials, and limited weldability characterization has been conducted on AM-fabricated materials. This study assesses the weld solidification cracking susceptibility of Alloys 625 and 718 produced by wrought (mill-rolled), LPBF, and DED using transverse varestraint testing, Scheil-Gulliver simulations, the Crack Susceptibility Index (CSI), and the Flow Resistance Index (FRI). Transverse varestraint testing revealed that AM parts exhibited higher susceptibility due to the presence of larger and elongated grains in the fusion zone, affecting the weld solidification cracking response. In Alloy 625, the LPBF condition exhibited the highest maximum crack distance (MCD) of 2.35 ± 0.16 mm, compared to 1.56 ± 0.06 mm for wrought and 1.72 ± 0.10 mm for DED. Similarly, in Alloy 718, the DED condition showed the highest MCD of 2.93 ± 0.41 mm, while the wrought condition had an MCD of 2.01 ± 0.12 mm, and the LPBF condition reached 3.01 ± 0.33 mm at 5 % strain, without a clearly defined saturation strain. Although wrought materials demonstrated greater resistance to solidification cracking, solidification simulations did not correlate with the experimental testing, as they do not account for microstructural and mechanical factors, relying solely on chemistry.more » « less
- 
            A dissimilar weld between a low alloy steel (LAS) butter weld joined to a F65 steel pipe using a narrow groove hot wire gas tungsten arc welding (HW-GTAW) procedure with Alloy 625 filler metal was investigated. The weld interpass microstructure is comprised of large swirls formed by a macrosegregation mechanism involving partial, non-uniform mixing of liquid base metal with the lower melting temperature weld pool, followed by fast solidification. This mechanism produces steep gradients in composition and solidification behavior. The resulting swirls are composed of alternating iron-rich peninsulas and partially mixed zones (PMXZ) that are surrounded by planar and cellular zones exhibiting multiple solidification directions. Large austenitic grains, encompassing planar, cellular, and dendritic morphologies, nucleate off peninsulas in direct contact with the weld pool. The highest hardness was found in nickel and chromium rich PMXZs that exhibited a lath martensite microstructure. In the event of exposure to hydrogen containing environments, the PMXZs could serve as nucleation sites for hydrogen assisted cracking.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    