Thermoelectric generators are being used as a successful power sources for space applications since 1960's in radioisotope-thermoelectric generators (RTGs) to supply power to space systems in deep space. RTG’s are capable of directly converting heat energy to uninterrupted electric power with no moving parts involved. The ability of thermoelectric materials to convert heat energy to electrical energy is defined by a dimensionless value known as the thermoelectric figure of merit (ZT) 1. This value quantifies the maximum thermoelectric efficiency of a thermoelectric generator (TEG) and is calculated by ZT= S2σT/κ, where S, σ, T, and κ represent Seebeck coefficient, electrical conductivity, temperature, and thermal conductivity, respectively. Among all of the thermoelectric materials, Bi2Te3 and its alloys have been reported to have high ZT values for low temperature energy harvesting and are highly suitable for powering wearables and self-powering sensors2, 3.
more »
« less
N-Type Bismuth Telluride Nanocomposite Materials Optimization for Thermoelectric Generators in Wearable Applications
Thermoelectric materials could play a crucial role in the future of wearable electronic devices. They can continuously generate electricity from body heat. For efficient operation in wearable systems, in addition to a high thermoelectric figure of merit, zT, the thermoelectric material must have low thermal conductivity and a high Seebeck coefficient. In this study, we successfully synthesized high-performance nanocomposites of n-type Bi2Te2.7Se0.3, optimized especially for body heat harvesting and power generation applications. Different techniques such as dopant optimization, glass inclusion, microwave radiation in a single mode microwave cavity, and sintering conditions were used to optimize the temperature-dependent thermoelectric properties of Bi2Te2.7Se0.3. The effects of these techniques were studied and compared with each other. A room temperature thermal conductivity as low as 0.65 W/mK and high Seebeck coefficient of −297 μV/K were obtained for a wearable application, while maintaining a high thermoelectric figure of merit, zT, of 0.87 and an average zT of 0.82 over the entire temperature range of 25 °C to 225 °C, which makes the material appropriate for a variety of power generation applications.
more »
« less
- PAR ID:
- 10106202
- Date Published:
- Journal Name:
- Materials
- Volume:
- 12
- Issue:
- 9
- ISSN:
- 1996-1944
- Page Range / eLocation ID:
- 1529
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract: Thermoelectricity allows direct conversion between heat and electricity, providing alternatives for green energy technologies. Despite these advantages, for most materials the energy conversion efficiency is limited by the tendency for the electrical and thermal conductivity to be proportional to each other and the Seebeck coefficient to be small. Here we report counter examples, where the heavy fermion compounds Yb TM 2 Zn 20 ( TM = Co, Rh, Ir) exhibit enhanced thermoelectric performance including a large power factor ( PF = 74 μW/cm-K 2 ; TM = Ir) and a high figure of merit ( ZT = 0.07; TM = Ir) at 35 K. The combination of the strongly hybridized electronic state originating from the Yb f -electrons and the novel structural features (large unit cell and possible soft phonon modes) leads to high power factors and small thermal conductivity values. This demonstrates that with further optimization these systems could provide a platform for the next generation of low temperature thermoelectric materials.more » « less
-
Traditional manufacturing methods restrict the expansion of thermoelectric technology. Here, we demonstrate a new manufacturing approach for thermoelectric materials. Selective laser melting, an additive manufacturing technique, is performed on loose thermoelectric powders for the first time. Layer-by-layer construction is realized with bismuth telluride, Bi 2 Te 3 , and an 88% relative density was achieved. Scanning electron microscopy results suggest good fusion between each layer although multiple pores exist within the melted region. X-ray diffraction results confirm that the Bi 2 Te 3 crystal structure is preserved after laser melting. Temperature-dependent absolute Seebeck coefficient, electrical conductivity, specific heat, thermal diffusivity, thermal conductivity, and dimensionless thermoelectric figure of merit ZT are characterized up to 500 °C, and the bulk thermoelectric material produced by this technique has comparable thermoelectric and electrical properties to those fabricated from traditional methods. The method shown here may be applicable to other thermoelectric materials and offers a novel manufacturing approach for thermoelectric devices.more » « less
-
In this study, we report a large magneto-thermal conductivity effect, potentially usable in heat flow switches and thermoelectric devices, in Ag2Te over a wide temperature range, including room temperature. When a magnetic field of μ0H = 9 T is applied to Ag2Te at 300 K along the direction perpendicular to the heat and electric currents, the thermal conductivity κ decreases by a remarkable 61%. This effect is mainly caused by the suppressed electronic thermal conductivity in association with a significant magnetoresistance effect, but the suppression of the thermal conductivity is larger than that of the electrical conductivity, presumably due to a field-induced decrease in the Lorenz ratio. Its very low lattice thermal conductivity, as low as 0.5 W m−1 K−1, also greatly contributes to the large relative magneto-thermal conductivity effect. The significant decrease in thermal conductivity and the 18% increase in the Seebeck coefficient S lead to a nearly 100% increase in the thermoelectric figure of merit zT = S2σTκ−1 despite the 43% decrease in electrical conductivity σ.more » « less
-
Thermoelectric active cooling uses nontraditional thermoelectric materials with high thermal conductivity, high thermoelectric power factor, and relatively low figure of merit (ZT) to transfer large heat flows from a hot object to a cold heat sink. However, prior studies have not considered the influence of external thermal resistances associated with the heat sinks or contacts, making it difficult to design active cooling thermal systems or compare the use of low-ZT and high-ZT materials. Here, we perform a non-dimensionalized analysis of thermoelectric active cooling under forced heat flow boundary conditions, including arbitrary external thermal resistances. We identify the optimal electrical currents to minimize the heat source temperature and find the crossover heat flows at which low-ZT active cooling leads to lower source temperatures than high-ZT and even ZT→+∞ thermoelectric refrigeration. These optimal parameters are insensitive to the thermal resistance between the heat source and thermoelectric materials, but depend strongly on the heat sink thermal resistance. Finally, we map the boundaries where active cooling yields lower source temperatures than thermoelectric refrigeration. For currently considered active cooling materials, active cooling with ZT < 0.1 is advantageous compared to ZT→+∞ refrigeration for dimensionless heat sink thermal conductances larger than 15 and dimensionless source powers between 1 and 100. Thus, our results motivate further investigation of system-level thermoelectric active cooling for applications in electronics thermal management.more » « less