Synthesis of a new mononuclear magnesium complex with a bulky bis(alkoxide) ligand environment and its reactivity in ring-opening polymerization (ROP) and ring-opening copolymerization (ROCOP) are reported. Reaction of n -butyl- sec -butylmagnesium with two equivalents of HOR (HOR = di- tert -butylphenylmethanol, HOC t Bu 2 Ph) formed Mg(OR) 2 (THF) 2 . The reaction proceeded via the Mg(OR)( sec -Bu)(THF) 2 intermediate that was independently synthesized by treating n -butyl- sec -butylmagnesium with one equivalent of HOR. Mg(OR) 2 (THF) 2 led to active albeit not well-controlled ROP of rac -lactide. In contrast, well-controlled ROCOP of epoxides with cyclic anhydrides was observed, including efficient and alternating copolymerization of phthalic anhydride with cyclohexene oxide as well as rare copolymerization of phthalic anhydride with limonene oxide and terpolymerization of phthalic anhydride with both cyclohexene oxide and limonene oxide. In addition, novel copolymerization of dihydrocoumarin with limonene oxide is described. 
                        more » 
                        « less   
                    
                            
                            Chain transfer agents utilized in epoxide and CO 2 copolymerization processes
                        
                    
    
            This tutorial deals initially with a comparison of the mechanistic aspects of living and immortal polymerization processes. The living polymerization pathway originated with the anionic polymerization of styrene by Szwarc, whereas immortal polymerization was first described by Inoue for the homopolymerization of epoxides using an aluminum complex. A similar behavior would be anticipated for the copolymerization of epoxides and carbon dioxide catalyzed by well-defined metal complexes. The major difference between these two pathways is rapid and reversible chain transfer reactions involving protic impurities or additives in the latter case, that is, the stoichiometry of the monomer/initiator ratio changes as a function of the nature and concentration of the chain transfer agent (CTA). For instance, in early studies of the copolymerization of epoxides and CO 2 where adventitious water was present in the copolymerization reactions, there was little control of the molecular weight of the resulting copolymer product. Presently, the presence of chain transfer with protic CTAs during the copolymerization of epoxides and CO 2 is a major positive factor in this process's commercialization. Specifically, this represents an efficient production of polyols for the synthesis of CO 2 -based polyurethanes. Studies of the use of various CTAs in the synthesis of designer polymeric materials from CO 2 and epoxides are summarized herein. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1665258
- PAR ID:
- 10106214
- Date Published:
- Journal Name:
- Green Chemistry
- Volume:
- 21
- Issue:
- 9
- ISSN:
- 1463-9262
- Page Range / eLocation ID:
- 2214 to 2223
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Co‐localization of monomers, crosslinkers, and chain‐transfer agents (CTA) within self‐assembled bilayers in an aqueous suspension enabled the successful directed assembly of nanocapsules using a reversible addition–fragmentation chain transfer (RAFT) process without compromising the polymerization kinetics. This study uncovered substantial influence of the organized medium on the course of the reaction, including differential reactivity based on placement and mobility of monomers, crosslinkers, and CTAs within the bilayer.more » « less
- 
            ABSTRACT Electrochemically mediated atom transfer radical polymerizations (ATRPs) provide well‐defined polymers with designed dispersity as well as under external temporal and spatial control. In this study, 1‐cyano‐1‐methylethyl diethyldithiocarbamate, typically used as chain‐transfer agent (CTA) in reversible addition–fragmentation chain transfer (RAFT) polymerization, was electrochemically activated by the ATRP catalyst CuI/2,2′‐bipyridine (bpy) to control the polymerization of methyl methacrylate. Mechanistic study showed that this polymerization was mainly controlled by the ATRP equilibrium. The effect of applied potential, catalyst counterion, catalyst concentration, and targeted degree of polymerization were investigated. The chain‐end functionality was preserved as demonstrated by chain extension of poly(methyl methacrylate) withn‐butyl methacrylate and styrene. This electrochemical ATRP procedure confirms that RAFT CTAs can be activated by an electrochemical stimulus. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 376–381more » « less
- 
            null (Ed.)Carbon dioxide based polymers synthesized from the metal-catalyzed copolymeriation of epoxides and CO 2 containing the terpyridine ligand as an end group are reported. The strategy used was to carry out the polymerization in the presence of a carboxylic acid derivative of terpyridine, 4′-(4-carboxyphenyl)-2,2′:6′,2′′-terpyridine (HL), as a chain transfer agent. The epoxide monomer possessing a vinyl substituent, allyl glycidyl ether (AGE), was copolymerized with CO 2 employing a (salen)Co( iii ) catalyst to afford a polycarbonate which upon the addition of mercaptoacetic acid across the double bond, followed by deprotonation, yielded a water soluble polymer. In a similar manner, the sequential formation of a diblock terpolymer produced from propylene oxide, AGE, and CO 2 provided a amphiphilic polycarbonate which self-assembled upon addition to water to form micelle nanostructures. The molecular weights of these CO 2 -derived polycarbonates were shown to be easily controlled by the quantity of chain transfer agent used. These polymeric ligands were demonstrated to provide a modular design for synthesizing a wide variety of metal complexes as illustrated herein for zinc and platinum derivatives.more » « less
- 
            null (Ed.)The role of Cp2Ti(H)Cl in the reactions of Cp2TiCl with trisubstituted epoxides has been investigated in a combined exptl. and computational study. Although Cp2Ti(H)Cl has generally been regarded as a robust species, its decompn. to Cp2TiCl and mol. hydrogen was found to be exothermic (ΔG = -11 kcal/mol when the effects of THF solvation are considered). In lab. studies, Cp2Ti(H)Cl was generated using the reaction of 1,2-epoxy-1-methylcyclohexane with Cp2TiCl as a model. Rapid evolution of hydrogen gas was measured, indicating that Cp2Ti(H)Cl is indeed a thermally unstable mol., which undergoes intermol. reductive elimination of hydrogen under the reaction conditions. The stoichiometry of the reaction (Cp2TiCl:epoxide = 1:1) and the quantity of hydrogen produced (1 mol per 2 mol of epoxide) is consistent with this assertion. The diminished yield of allylic alc. from these reactions under the conditions of protic vs. aprotic catalysis can be understood in terms of the predominant titanium(III) present in soln. Under the conditions of protic catalysis, Cp2TiCl complexes with collidine hydrochloride and the titanium(III) center is less available for "cross-disproportionation" with carbon-centered radicals; this leads to byproducts from radical capture by hydrogen atom transfer, resulting in a satd. alc. (2-methylcyclohexan-1-ol). [on SciFinder(R)] CAPLUS AN 2020:290383(Conference; Meeting Abstract; Online Computer File)more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    