skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational studies of shape control of charged deformable nanocontainers
Biological matter is often compartmentalized by soft membranes that dynamically change their shape in response to chemical and mechanical cues. Deformable soft-matter-based nanoscale membranes or nanocontainers that mimic this behavior can be used as drug-delivery carriers that can adapt to evolving physiological conditions, or as dynamic building blocks for the design of novel hierarchical materials via assembly engineering. Here, we connect the intrinsic features of charged deformable nanocontainers such as their size, charge, surface tension, and elasticity with their equilibrium shapes for a wide range of solution conditions using molecular dynamics simulations. These links identify the fundamental mechanisms that establish the chemical and materials design control strategies for modulating the equilibrium shape of these nanocontainers. We show that flexible nanocontainers of radii ranging from 10–20 nm exhibit sphere-to-rod-to-disc shape transitions yielding rods and discs over a wide range of aspect ratio λ (0.3 < λ < 5). The shape transitions can be controlled by tuning salt and/or surfactant concentration as well as material elastic parameters. The shape changes are driven by reduction in the global electrostatic energy and are associated with dramatic changes in local surface elastic energy distributions. To illustrate the shape transition mechanisms, exact analytical calculations for idealized spheroidal nanocontainers in salt-free conditions are performed. Explicit counterion simulations near nanocontainers and associated Manning model calculations provide an assessment of the stability of observed shape deformations in the event of ion condensation.  more » « less
Award ID(s):
1753182
PAR ID:
10106245
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Materials Chemistry B
ISSN:
2050-750X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding how soft matter deforms in response to mechanical interactions is central to the design of functional synthetic materials as well as elucidation of the behaviors of biological assemblies. Here we explore how cycles of thermally induced transitions between nematic (N) and isotropic (I) phases can be used to exert cyclical elastic stresses on dispersions of giant unilamellar vesicles (GUVs) and thereby evolve GUV shape and properties. The measurements were enabled by the finding that I–N–I phase transitions of the lyotropic chromonic liquid crystal disodium cromoglycate, when conducted via an intermediate columnar (M) phase, minimized transport of GUVs on phase fronts to confining surfaces. Whereas I to N phase transitions strained spherical GUVs into spindle-like shapes, with an efflux of GUV internal volume, subsequent N to I transitions generated a range of complex GUV shapes, including stomatocyte, pear- and dumbbell-like shapes that depended on the extent of strain in the N phase. The highest strained GUVs were observed to form buds (daughter vesicles) that we show, via a cycle of I–N–I–N phase transitions, are connected via a neck to the parent vesicle. Additional experiments established that changes in elasticity of the phase surrounding the GUVs and not thermal expansion of membranes were responsible for the shape transitions, and that I–N–I transformations that generate stomatocytes can be understood from the Bilayer-Coupling model of GUV shapes. Overall, these observations advance our understanding of how LC elastic stresses can be regulated to evolve the shapes of soft biological assemblies as well as provide new approaches for engineering synthetic soft matter. 
    more » « less
  2. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less
  3. Abstract In active matter systems, deformable boundaries provide a mechanism to organize internal active stresses. To study a minimal model of such a system, we perform particle-based simulations of an elastic vesicle containing a collection of polar active filaments. The interplay between the active stress organization due to interparticle interactions and that due to the deformability of the confinement leads to a variety of filament spatiotemporal organizations that have not been observed in bulk systems or under rigid confinement, including highly-aligned rings and caps. In turn, these filament assemblies drive dramatic and tunable transformations of the vesicle shape and its dynamics. We present simple scaling models that reveal the mechanisms underlying these emergent behaviors and yield design principles for engineering active materials with targeted shape dynamics. 
    more » « less
  4. The paper studies the equilibrium configurations of inextensible elastic membranes exhibiting lateral fluidity. Using a continuum description of the membrane's motions based on the surface Navier–Stokes equations with bending forces, the paper derives differential equations governing the mechanical equilibrium. The equilibrium conditions are found to be independent of lateral viscosity and relate tension, pressure, and tangential velocity of the fluid. These conditions suggest that either the lateral fluid motion ceases or non-decaying stationary flow of mass can only be supported by surfaces with Killing vector fields, such as axisymmetric shapes. A shape equation is derived that extends the classical Helfrich model with an area constraint to membranes of non-negligible mass. Furthermore, the paper suggests a simple numerical method to compute solutions of the shape equation. Numerical experiments conducted reveal a diverse family of equilibrium configurations. The stability of equilibrium states involving lateral flow of mass remains an unresolved question. 
    more » « less
  5. During epithelial wound healing, cell morphology near the healed wound and the healing rate vary strongly among different developmental stages even for a single species like Drosophila. We develop deformable particle (DP) model simulations to understand how variations in cell mechanics give rise to distinct wound closure phenotypes in the Drosophila embryonic ectoderm and larval wing disc epithelium. We find that plastic deformation of the cell membrane can generate large changes in cell shape consistent with wound closure in the embryonic ectoderm. Our results show that the embryonic ectoderm is best described by cell membranes with an elasto-plastic response, whereas the larval wing disc is best described by cell membranes with an exclusively elastic response. By varying the mechanical response of cell membranes in DP simulations, we recapitulate the wound closure behavior of both the embryonic ectoderm and the larval wing disc. 
    more » « less