This work focuses on the problem of fusing a hyperspectral image (HSI) and a multispectral image (MSI) to produce a super-resolution image that admits high spatial and spectral resolutions. Existing algorithms are mostly based on joint low-rank factorization of the ma-tricized HSI and MSI. This framework is effective to some extent, but several challenges remain. First, it is unclear whether or not the super-resolution image is identifiable in theory under this framework, while identifiability usually plays an essential role in such estimation problems. Second, most algorithms assume that the degradation operators from the super-resolution image to the HSI and MSI are known or can be easily estimated - which is hardly true in practice. In this work, we propose a novel coupled tensor decomposition method that can effectively circumvent these issues. The proposed approach guarantees the identifiability of the super-resolution image under realistic conditions. The method can work even without knowing the spatial degradation operator, which could be hard to accurately estimate in practice. Simulations using AVIRIS Cuprite data are employed to demonstrate the effectiveness of the proposed approach.
more »
« less
Hyperspectral Super-Resolution: Combining Low Rank Tensor and Matrix Structure
Hyperspectral super-resolution refers to the task of fusing a hyperspectral image (HSI) and a multispectral image (MSI) in order to produce a super-resolution image (SRI) that has high spatial and spectral resolution. Popular methods leverage matrix factorization that models each spectral pixel as a convex combination of spectral signatures belonging to a few endmembers. These methods are considered state-of-the-art, but several challenges remain. First, multiband images are naturally three dimensional (3-d) signals, while matrix methods usually ignore the 3-d structure, which is prone to information losses. Second, these methods do not provide identifiability guarantees under which the reconstruction task is feasible. Third, a tacit assumption is that the degradation operators from SRI to MSI and HSI are known - which is hardly the case in practice. Recently [1], [2] proposed a coupled tensor factorization approach to handle these issues. In this work we propose a hybrid model that combines the benefits of tensor and matrix factorization approaches. We also develop a new algorithm that is mathematically simple, enjoys identifiability under relaxed conditions and is completely agnostic of the spatial degradation operator. Experimental results with real hyperspectral data showcase the effectiveness of the proposed approach.
more »
« less
- Award ID(s):
- 1704074
- PAR ID:
- 10106326
- Date Published:
- Journal Name:
- 2018 25th IEEE International Conference on Image Processing (ICIP)
- Page Range / eLocation ID:
- 3318 to 3322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hyperspectral imaging has broad applications and impacts in areas including environmental science, weather, and geo/space exploration. The intrinsic spectral–spatial structures and potential multi-level features in different frequency bands make multilayer graph an intuitive model for hyperspectral images (HSI). To study the underlying characteristics of HSI and to take the advantage of graph signal processing (GSP) tools, this work proposes a multilayer graph spectral analysis for hyperspectral images based on multilayer graph signal processing (M-GSP). More specifically, we present multilayer graph (MLG) models and tensor representations for HSI. By exploring multilayer graph spectral space, we develop MLG-based methods for HSI applications, including unsupervised segmentation and supervised classification. Our experimental results demonstrate the strength of M-GSP in HSI processing and spectral–spatial information extraction.more » « less
-
Agaian, Sos S.; Jassim, Sabah A.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)Neural networks have emerged to be the most appropriate method for tackling the classification problem for hyperspectral images (HIS). Convolutional neural networks (CNNs), being the current state-of-art for various classification tasks, have some limitations in the context of HSI. These CNN models are very susceptible to overfitting because of 1) lack of availability of training samples, 2) large number of parameters to fine-tune. Furthermore, the learning rates used by CNN must be small to avoid vanishing gradients, and thus the gradient descent takes small steps to converge and slows down the model runtime. To overcome these drawbacks, a novel quaternion based hyperspectral image classification network (QHIC Net) is proposed in this paper. The QHIC Net can model both the local dependencies between the spectral channels of a single-pixel and the global structural relationship describing the edges or shapes formed by a group of pixels, making it suitable for HSI datasets that are small and diverse. Experimental results on three HSI datasets demonstrate that the QHIC Net performs on par with the traditional CNN based methods for HSI Classification with a far fewer number of parameters. Keywords: Classification, deep learning, hyperspectral imaging, spectral-spatial feature learningmore » « less
-
Messinger, David W.; Velez-Reyes, Miguel (Ed.)Recently, multispectral and hyperspectral data fusion models based on deep learning have been proposed to generate images with a high spatial and spectral resolution. The general objective is to obtain images that improve spatial resolution while preserving high spectral content. In this work, two deep learning data fusion techniques are characterized in terms of classification accuracy. These methods fuse a high spatial resolution multispectral image with a lower spatial resolution hyperspectral image to generate a high spatial-spectral hyperspectral image. The first model is based on a multi-scale long short-term memory (LSTM) network. The LSTM approach performs the fusion using a multiple step process that transitions from low to high spatial resolution using an intermediate step capable of reducing spatial information loss while preserving spectral content. The second fusion model is based on a convolutional neural network (CNN) data fusion approach. We present fused images using four multi-source datasets with different spatial and spectral resolutions. Both models provide fused images with increased spatial resolution from 8m to 1m. The obtained fused images using the two models are evaluated in terms of classification accuracy on several classifiers: Minimum Distance, Support Vector Machines, Class-Dependent Sparse Representation and CNN classification. The classification results show better performance in both overall and average accuracy for the images generated with the multi-scale LSTM fusion over the CNN fusionmore » « less
-
Abstract Stem cell‐based therapies carry significant promise for treating human diseases. However, clinical translation of stem cell transplants for effective treatment requires precise non‐destructive evaluation of the purity of stem cells with high sensitivity (<0.001% of the number of cells). Here, a novel methodology using hyperspectral imaging (HSI) combined with spectral angle mapping‐based machine learning analysis is reported to distinguish differentiating human adipose‐derived stem cells (hASCs) from control stem cells. The spectral signature of adipogenesis generated by the HSI method enables identifying differentiated cells at single‐cell resolution. The label‐free HSI method is compared with the standard techniques such as Oil Red O staining, fluorescence microscopy, and qPCR that are routinely used to evaluate adipogenic differentiation of hASCs. HSI is successfully used to assess the abundance of adipocytes derived from transplanted cells in a transgenic mice model. Further, Raman microscopy and multiphoton‐based metabolic imaging is performed to provide complementary information for the functional imaging of the hASCs. Finally, the HSI method is validated using matrix‐assisted laser desorption/ionization‐mass spectrometry imaging of the stem cells. The study presented here demonstrates that multimodal imaging methods enable label‐free identification of stem cell differentiation with high spatial and chemical resolution.more » « less
An official website of the United States government

