skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Principles of lossless adjustable one-ports
This paper explores the possibility to construct two- terminal mechanical devices (one-ports) which are lossless and adjustable. To be lossless, the device must be passive (i.e. not requiring a power supply) and non-dissipative. To be adjustable, a parameter of the device should be freely variable in real time as a control input. For the simplest lossless one ports, the spring and inerter, the question is whether the stiffness and inertance may be varied freely in a lossless manner. We will show that the typical laws which have been proposed for adjustable springs and inerters are necessarily active and that it is not straightforward to modify them to achieve losslessness, or indeed passivity. By means of a physical construction using a lever with moveable fulcrum we will derive device laws for adjustable springs and inerters which satisfy a formal definition of losslessness. We further provide a construction method which does not require a power supply for physically realisable translational and rotary springs and inerters. The analogous questions for lossless adjustable electrical devices are examined.  more » « less
Award ID(s):
1807664 1665031 1839441
PAR ID:
10106351
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Transactions on Automatic Control
ISSN:
0018-9286
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, design of a compact high frequency four-port transformer for a Solid-State Transformer (SST) arrangement is presented. Unlike other SSTs, the four-port system integrates three active sources and a load port with galvanic isolation via a single transformer core. In addition to this feature, one of the three source ports is designed to operate at Medium Voltage (MV) 7.2kV for direct connection to 4.16kV AC grid, while other ports nominal voltages are rated at 400V. The transformer is designed to operate at 50kHz and to supply 25kW/port. Thus, the proposed system connects the MV grid, Energy Storage System (ESS), PV, and DC load to each other on a single common transformer core. Based on the system power demand and availability of renewable energy resources, utility and energy storage ports can either supply or draw power, while PV port can only supply power, maintaining the required demand for the load. This work focuses mainly on the High Frequency Transformer (HFT) design. An extensive study is carried out to obtain the optimal, compact, cost effective, and high efficiency model. Modeling, mathematical, and simulation results are derived and presented to demonstrate the viability of this design. 
    more » « less
  2. A technique for the design of conformal metasurfaces with two spatially disconnected space wave ports connected by a surface wave is presented. The passive and lossless metasurface absorbs the incident wave at port 1, converts it nearly perfectly into a surface wave which transports the energy along an arbitrarily shaped/curved metasurface to port 2, then reradiates the captured power as a radiated field with control over its amplitude and phase. Since the incident field is seen to disappear at the input port and reappear at a spatially dislocated port as a new formed beam, the space wave can be said to have been seamlessly transported from one point in space to another. The metasurface consists of a single, conformal, spatially variant, impedance sheet supported by a conformal grounded dielectric substrate of the same shape. It is modeled using integral equations. The integral equations are solved using the method of moments (MoM). The impedances of the sheet are optimized using the adjoint variable method to achieve the near perfect wave transportation operation from a passive and lossless metasurface. MATLAB codes and COMSOL Multiphysics simulation files for all designs presented in this paper are available for download as supplemental material files. Possible applications include channel optimization for cellular networks, inexpensive power harvesting, sensing, around-the-corner radar, and cloaking. 
    more » « less
  3. We report a novel four-port optical router that exploits non-linear properties of vanadium dioxide (VO2) phase-change material to achieve asymmetrical power threshold response with power limiting capability. The scope of this study lies within the concept, modeling, and simulation of the device, with practical considerations in mind for future experimental devices. The waveguide structure, designed to operate at the wavelength of 5.0 µm, is composed of a silicon core with air and silicon dioxide forming the cladding layers. Two ring resonators are employed to couple two straight waveguides, thus four individual ports. One of the ring resonators has a 100-nm-thick VO2layer responsible for non-linear behavior of the device. The router achieves 56.5 and 64.5 dB of power limiting at the forward and reverse operating modes, respectively. Total transmission in the inactivated mode is 75%. Bi-stability and latching behavior are demonstrated and discussed. 
    more » « less
  4. Abstract One of the emerging themes of fish-inspired robotics is flexibility. Adding flexibility to the body, joints, or fins of fish-inspired robots can significantly improve thrust and/or efficiency during locomotion. However, the optimal stiffness depends on variables such as swimming speed, so there is no one ‘best’ stiffness that maximizes efficiency in all conditions. Fish are thought to solve this problem by using muscular activity to tune their body and fin stiffness in real-time. Inspired by fish, some recent robots sport polymer actuators, adjustable leaf springs, or artificial tendons that tune stiffness mechanically. Models and water channel tests are providing a theoretical framework for stiffness-tuning strategies that devices can implement. The strategies can be thought of as analogous to car transmissions, which allow users to improve efficiency by tuning gear ratio with driving speed. We provide an overview of the latest discoveries about (1) the propulsive benefits of flexibility, particularly tunable flexibility, and (2) the mechanisms and strategies that fish and fish-inspired robots use to tune stiffness while swimming. 
    more » « less
  5. The availability of chemical energy supplies is fundamental to environmental and planetary habitability. However, the presence of a chemical energy supply does not guarantee the presence of microorganisms capable of consuming it. In this study, chemical energy supplies available in Yellowstone National Park (YNP) hot springs were calculated, and the results indicate that ammonia oxidation, calculated using total dissolved ammonia, is one of the major energy supplies. Nevertheless, known ammonia-oxidizers (AO) are only present in a small fraction of the hot springs tested. Where AO are present, they do not dominate the microbial communities (relative abundances <5%), even in cases where total dissolved ammonia oxidation is the richest energy supply. The AO in YNP hot springs are predominantly ammonia-oxidizing archaea (AOA), which tend to favor environments with low total ammonia (sum of NH3 and NH4+) concentrations, despite the requirement of ammonia (NH3) as a substrate. Hot spring pH and temperature determine the ratio of NH3 to NH4+ and, consequently, NH3 availability to resident AOA. In this study, total ammonia measurements were collected from YNP hot spring samples using ion chromatography in coordination with biological sampling. DNA was extracted from simultaneously collected samples for 16S rRNA gene sequencing and analysis, and for the identification of known AOA. The WORM-portal (https://worm-portal.asu.edu/) was used to speciate the total ammonia measurements into ammonia and ammonium activities. By performing speciation calculations, we identified a potential lower limit for substrate (NH3) availability and a potential upper limit for NH4+ concentrations for the YNP hot spring AOA. Thus, the niche for AOA across YNP hot springs is dictated by the form of the total dissolved ammonia present, not by the energy supply available for total dissolved ammonia oxidation. 
    more » « less