skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Self-aligned inkjet printing of resistors and low-pass resistor–capacitor filters on roll-to-roll imprinted plastics with resistances ranging from 10 to 10 6 Ω
Award ID(s):
1634263
PAR ID:
10106534
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Flexible and Printed Electronics
Volume:
3
Issue:
4
ISSN:
2058-8585
Page Range / eLocation ID:
045003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Measurements of multiple cosmogenic nuclides in a single sample are valuable for various applications of cosmogenic nuclide exposure dating and allow for correcting exposure ages for surface weathering and erosion and establishing exposure–burial history. Here we provide advances in the measurement of cosmogenic 10Be in pyroxene and constraints on the production rate that provide new opportunities for measurements of multi-nuclide systems, such as 10Be/3He, in pyroxene-bearing samples. We extracted and measured cosmogenic 10Be in pyroxene from two sets of Ferrar Dolerite samples collected from the Transantarctic Mountains in Antarctica. One set of samples has 10Be concentrations close to saturation, which allows for the production rate calibration of 10Be in pyroxene by assuming production–decay equilibrium. The other set of samples, which has a more recent exposure history, is used to determine if a rapid fusion method can be successfully applied to samples with Holocene to Last Glacial Maximum exposure ages. From measured 10Be concentrations in the near-saturation sample set we find the production rate of 10Be in pyroxene to be 3.74 ± 0.10 atoms g−1 yr−1, which is consistent with 10Be/3He paired nuclide ratios from samples assumed to have simple exposure. Given the high 10Be concentration measured in this sample set, a sample mass of ∼ 0.5 g of pyroxene is sufficient for the extraction of cosmogenic 10Be from pyroxene using a rapid fusion method. However, for the set of samples that have low 10Be concentrations, measured concentrations were higher than expected. We attribute spuriously high 10Be concentrations to failure in removing all meteoric 10Be and/or a highly variable and poorly quantified procedural blank background correction. 
    more » « less
  2. Abstract A major challenge for graphene applications is the lack of mass production technology for large‐scale and high‐quality graphene growth and transfer. Here, a roll‐to‐roll (R2R) dry transfer process for large‐scale graphene grown by chemical vapor deposition is reported. The process is fast, controllable, and environmentally benign. It avoids chemical contamination and allows the reuse of graphene growth substrates. By controlling tension and speed of the R2R dry transfer process, the electrical sheet resistance is achieved as 9.5 kΩ sq−1, the lowest ever reported among R2R dry transferred graphene samples. The R2R dry transferred samples are used to fabricate graphene‐based field‐effect transistors (GFETs) on polymer. It is demonstrated that these flexible GFETs feature a near‐zero doping level and a gate leakage current one to two orders of magnitude lower than those fabricated using wet‐chemical etched graphene samples. The scalability and uniformity of the R2R dry transferred graphene is further demonstrated by successfully transferring a 3 × 3 in2sample and measuring its field‐effect mobility with 36 millimeter‐scaled GFETs evenly spaced on the sample. The field‐effect mobility of the R2R dry transferred graphene is determined to be 205 ± 36 cm2 V−1
    more » « less
  3. Roll-to-roll fabrication setup for self-folding films has been developed to enable high-throughput production of three-dimensional self-folding microstructures, a significant step towards successful commercialization. 
    more » « less