skip to main content

Title: Aluminium( iii ) dialkyl 2,6-bisimino-4 R -dihydropyridinates(−1): selective synthesis, structure and controlled dimerization
A family of stable and otherwise selectively unachievable 2,6-bisimino-4- R -1,4-dihydropyridinate aluminium (III) dialkyl complexes [AlR' 2 (4-R- i PrBIPH)] (R = Bn, Allyl; R′ = Me, Et, i Bu) have been synthesized, taking advantage of a method for the preparation of the corresponding 4- R -1,4-dihydropiridine precursors developed in our group. All the dihydropyrdinate(−1) dialkyl aluminium complexes have been fully characterized by 1 H- 13 C-NMR, elemental analysis and in the case 2′a , also by X-ray diffraction studies. Upon heating in toluene solution at 110 °C, the dimethyl derivatives 2a and 2′a dimerize selectively through a double cycloaddition. This reaction leads to the formation of two new C–C bonds that involve the both meta positions of the two 4- R -1,4-dihydropyridinate fragments, resulting the binuclear aluminium species [Me 2 Al(4-R- i PrHBIP)] 2 (R = Bn ( 3a ); allyl ( 3′a )). Experimental kinetics showed that the dimerization of 2′a obeys second order rate with negative activation entropy, which is consistent with a bimolecular rate-determining step. Controlled methanolysis of both 3a and 3′a release the metal-free dimeric bases, (4-Bn- i PrHBIPH) 2 and (4-allyl- i PrHBIPH) 2 , providing a convenient route to these potentially useful ditopic more » ligands. When the R′ groups are bulkier than Me ( 2b , 2′b and 2′c ), the dimerization is hindered or fully disabled, favoring the formation of paramagnetic NMR-silent species, which have been identified on the basis of a controlled methanolysis of the final organometallic products. Thus, when a toluene solution of [AlEt 2 (4-Bn- i PrBIPH)] ( 2b ) was heated at 110 °C, followed by the addition of methanol in excess, it yields a mixture of the dimer (4-Bn- i PrHBIPH) 2 and the aromatized base 4-Bn- i PrBIP, in ca . 1 : 2 ratio, indicating that the dimerization of 2b competes with its spontaneous dehydrogenation, yielding a paramagnetic complex containing a AlEt 2 unit and a non-innocent (4-Bn- i PrBIP) ˙− radical-anion ligand. Similar NMR monitoring experiments on the thermal behavior of [AlEt 2 (4-allyl- i PrBIPH)] ( 2′b ) and [Al i Bu 2 (4-allyl-iPrBIPH)] ( 2′c ) showed that these complexes do not dimerize, but afford exclusively NMR silent products. When such thermally treated samples were subjected to methanolysis, they resulted in mixtures of the alkylated 4-allyl- i PrBIP and non-alkylated i PrBIP ligand, suggesting that dehydrogenation and deallylation reactions take place competitively. « less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Dalton Transactions
Page Range or eLocation-ID:
9104 to 9116
Sponsoring Org:
National Science Foundation
More Like this
  1. α-substituted ketones are important chemical targets as synthetic intermediates as well as functionalities in in natural products and pharmaceuticals. We report the sp3 C-H α-acetylation of sp3 C-H substrates R-H with arylmethyl ketones ArC(O)Me to provide α-alkylated ketones ArC(O)CH2R at RT with tBuOOtBu as oxidant via copper(I) β-diketiminato catalysts. Proceeding via alkyl radicals R•, this method enables α-substitution with bulky substituents without competing elimination that occurs in more traditional alkylation reactions between enolates and alkyl electrophiles. DFT studies suggest the intermediacy of copper(II) enolates [CuII](CH2C(O)Ar) that capture alkyl radicals R• to give R-CH2C(O)Ar under competing dimerization of the copper(II) enolate to give the 1,4-diketone ArC(O)CH2CH2C(O)Ar.
  2. Herein we report an experimental and computational study of a family of four coordinated 14-electron complexes of Rh( iii ) devoid of agostic interactions. The complexes [X–Rh(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], where X = Cl (Rh-1), Br (Rh-2), I (Rh-3), OTf (Rh-4), Cl·GaCl 3 (Rh-5); derive from a bis(silyl)- o -tolylphosphine with isopropyl substituents on the Si atoms. All five complexes display a sawhorse geometry around Rh and exhibit similar spectroscopic and structural properties. The catalytic activity of these complexes and [Cl–Ir(κ 3 ( P,Si,Si )PhP( o -C 6 H 4 CH 2 Si i Pr 2 ) 2 ], Ir-1, in styrene and aliphatic alkene functionalizations with hydrosilanes is disclosed. We show that Rh-1 catalyzes effectively the dehydrogenative silylation of styrene with Et 3 SiH in toluene while it leads to hydrosilylation products in acetonitrile. Rh-1 is an excellent catalyst in the sequential isomerization/hydrosilylation of terminal and remote aliphatic alkenes with Et 3 SiH including hexene isomers, leading efficiently and selectively to the terminal anti-Markonikov hydrosilylation product in all cases. With aliphatic alkenes, no hydrogenation products are observed. Conversely, catalysis of the same hexene isomersmore »by Ir-1 renders allyl silanes, the tandem isomerization/dehydrogenative silylation products. A mechanistic proposal is made to explain the catalysis with these M( iii ) complexes.« less
  3. The origin in deshielding of 29 Si NMR chemical shifts in R 3 Si–X, where X = H, OMe, Cl, OTf, [CH 6 B 11 X 6 ], toluene, and O X (O X = surface oxygen), as well as i Pr 3 Si + and Mes 3 Si + were studied using DFT methods. At the M06-L/6-31G(d,p) level of theory the geometry optimized structures agree well with those obtained experimentally. The trends in 29 Si NMR chemical shift also reproduce experimental trends; i Pr 3 Si–H has the most shielded 29 Si NMR chemical shift and free i Pr 3 Si + or isolable Mes 3 Si + have the most deshielded 29 Si NMR chemical shift. Natural localized molecular orbital (NLMO) analysis of the contributions to paramagnetic shielding ( σ p ) in these compounds shows that Si–R (R = alkyl, H) bonding orbitals are the major contributors to deshielding in this series. The Si–R bonding orbitals are coupled to the empty p-orbital in i Pr 3 Si + or Mes 3 Si + , or to the orbital in R 3 Si–X. This trend also applies to surface bound R 3 Si–O X . This model alsomore »explains chemical shift trends in recently isolated t Bu 2 SiH 2 + , t BuSiH 2 + , and SiH 3 + that show more shielded 29 Si NMR signals than R 3 Si + species. There is no correlation between isotropic 29 Si NMR chemical shift and charge at silicon.« less
  4. A flexible polydentate bis(amidine) ligand LH 2 , LH 2 = {CH 2 NH( t Bu)CN-2-(6-MePy)} 2 , operates as a molecular lock for various coinage metal fragments and forms the dinuclear complexes [LH 2 (MCl) 2 ], M = Cu (1), Au (2), the coordination polymer [{(LH 2 ) 2 (py) 2 (AgCl) 3 }(py) 3 ] n (3), and the dimesityl-digold complex [LH 2 (AuMes) 2 ] (4) by formal insertion of MR fragments (M = Cu, Ag, Au; R = Cl, Mes) into the N–H⋯N hydrogen bonds of LH 2 in yields of 43–95%. Complexes 1, 2, and 4 adopt C 2 -symmetrical structures in the solid state featuring two interconnected 11-membered rings that are locked by two intramolecular N–H⋯R–M hydrogen bonds. QTAIM analyses of the computational geometry-optimized structures 1a, 2a, and 4a reveal 13, 11, and 22 additional bond critical points, respectively, all of which are related to weak intramolecular attractive interactions, predominantly representing dispersion forces, contributing to the conformational stabilization of the C 2 -symmetrical stereoisomers in the solid state. Variable-temperature 1 H NMR spectroscopy in combination with DFT calculations indicate a dynamic conformational interconversion between two C 2 -symmetrical ground state structures in solutionmore »(Δ G ‡c = 11.1–13.8 kcal mol −1 ), which is accompanied by the formation of an intermediate possessing C i symmetry that retains the hydrogen bonds.« less
  5. Cationic gold vinyl carbene/allylic cation complexes of the form ( E )-[(L)AuC(H)C(H)CAr 2 ] + OTf − {L = IPr, Ar = Ph [( E )- 5a ], L = IPr, Ar = 4-C 6 H 4 OMe [( E )- 5b ], L = P( t -Bu) 2 o -biphenyl, Ar = 4-C 6 H 4 OMe [( E )- 5c ]} were generated in solution via Lewis acid-mediated ionization of the corresponding gold (γ-methoxy)vinyl complexes ( E )-(L)AuC(H)C(H)C(OMe)Ar 2 at or below −95 °C. Complexes ( E )- 5b and ( E )- 5c were fully characterized in solution employing multinuclear NMR spectroscopy, which established the predominant contribution of the aurated allylic cation resonance structure and the significant distribution of positive charge into the γ-anisyl rings. Complex ( E )- 5b reacted rapidly at −95 °C with neutral two-electron, hydride, and oxygen atom donors exclusively at the C1 position of the vinyl carbene moiety and with p -methoxystyrene to form the corresponding vinylcyclopropane. In the absence of nucleophile ( E )- 5a decomposed predominantly via intermolecular carbene dimerization whereas formation of 1-aryl-5-methoxy indene upon ionization of ( Z )-(IPr)AuC(H)C(H)C(OMe)(4-C 6 H 4 OMe) 2 [( Z )- 6bmore »] implicated an intramolecular Friedel–Crafts or electrocyclic Nazarov pathway for the decomposition of the unobserved vinyl carbene complex ( Z )-[(IPr)AuC(H)C(H)C(4-C 6 H 4 OMe) 2 ] + OTf − [( Z )- 5b ].« less