skip to main content


Title: Using Local Experiences for Global Motion Planning
Sampling-based planners are effective in many real-world applications such as robotics manipulation, navigation, and even protein modeling. However, it is often challenging to generate a collision-free path in environments where key areas are hard to sample. In the absence of any prior information, sampling-based planners are forced to explore uniformly or heuristically, which can lead to degraded performance. One way to improve performance is to use prior knowledge of environments to adapt the sampling strategy to the problem at hand. In this work, we decompose the workspace into local primitives, memorizing local experiences by these primitives in the form of local samplers, and store them in a database. We synthesize an efficient global sampler by retrieving local experiences relevant to the given situation. Our method transfers knowledge effectively between diverse environments that share local primitives and speeds up the performance dramatically. Our results show, in terms of solution time, an improvement of multiple orders of magnitude in two traditionally challenging high-dimensional problems compared to state-of-the-art approaches.  more » « less
Award ID(s):
1718478
NSF-PAR ID:
10106628
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2019 IEEE International Conference on Robotics and Automation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent work has demonstrated that motion planners’ performance can be significantly improved by retrieving past experiences from a database. Typically, the experience database is queried for past similar problems using a similarity function defined over the motion planning problems. However, to date, most works rely on simple hand-crafted similarity functions and fail to generalize outside their corresponding training dataset. To address this limitation, we propose (FIRE), a framework that extracts local representation of planning problems and learns a similarity function over them. To generate the training data we introduce a novel self-supervised method that identifies similar and dissimilar pairs of local primitives from past solution paths. With these pairs, a Siamese network is trained with the contrastive loss and the similarity function is realized in the network’s latent space. We evaluate FIRE on an 8-DOF manipulator in five categories of motion planning problems with sensed environments. Our experiments show that FIRE retrieves relevant experiences which can informatively guide sampling-based planners even in problems outside its training distribution, outperforming other baselines. 
    more » « less
  2. Abstract

    Intelligence involves processing sensory experiences into representations useful for prediction. Understanding sensory experiences and building these contextual representations without prior knowledge of sensor models and environment is a challenging unsupervised learning problem. Current machine learning methods process new sensory data using prior knowledge defined by either domain knowledge or datasets. When datasets are not available, data acquisition is needed, though automating exploration in support of learning is still an unsolved problem. Here we develop a method that enables agents to efficiently collect data for learning a predictive sensor model—without requiring domain knowledge, human input, or previously existing data—using ergodicity to specify the data acquisition process. This approach is based entirely on data-driven sensor characteristics rather than predefined knowledge of the sensor model and its physical characteristics. We learn higher quality models with lower energy expenditure during exploration for data acquisition compared to competing approaches, including both random sampling and information maximization. In addition to applications in autonomy, our approach provides a potential model of how animals use their motor control to develop high quality models of their sensors (sight, sound, touch) before having knowledge of their sensor capabilities or their surrounding environment.

     
    more » « less
  3. null (Ed.)
    Object rearrangement is a widely-applicable and challenging task for robots. Geometric constraints must be carefully examined to avoid collisions and combinatorial issues arise as the number of objects increases. This work studies the algorithmic structure of rearranging uniform objects, where robot-object collisions do not occur but object-object collisions have to be avoided. The objective is minimizing the number of object transfers under the assumption that the robot can manipulate one object at a time. An efficiently computable decomposition of the configuration space is used to create a ``region graph'', which classifies all continuous paths of equivalent collision possibilities. Based on this compact but rich representation, a complete dynamic programming primitive DFSDP performs a recursive depth first search to solve monotone problems quickly, i.e., those instances that do not require objects to be moved first to an intermediate buffer. DFSDP is extended to solve single-buffer, non-monotone instances, given a choice of an object and a buffer. This work utilizes these primitives as local planners in an informed search framework for more general, non-monotone instances. The search utilizes partial solutions from the primitives to identify the most promising choice of objects and buffers. Experiments demonstrate that the proposed solution returns near-optimal paths with higher success rate, even for challenging non-monotone instances, than other leading alternatives. 
    more » « less
  4. null (Ed.)
    Object rearrangement is a widely-applicable and challenging task for robots. Geometric constraints must be carefully examined to avoid collisions and combinatorial issues arise as the number of objects increases. This work studies the algorithmic structure of rearranging uniform objects, where robot-object collisions do not occur but object-object collisions have to be avoided. The objective is minimizing the number of object transfers under the assumption that the robot can manipulate one object at a time. An efficiently computable decomposition of the configuration space is used to create a “region graph”, which classifies all continuous paths of equivalent collision possibilities. Based on this compact but rich representation, a complete dynamic programming primitive DFS DP performs a recursive depth first search to solve monotone problems quickly, i.e., those instances that do not require objects to be moved first to an intermediate buffer. DFS DP is extended to solve single-buffer, non-monotone instances, given a choice of an object and a buffer. This work utilizes these primitives as local planners in an informed search framework for more general, non-monotone instances. The search utilizes partial solutions from the primitives to identify the most promising choice of objects and buffers. Experiments demonstrate that the proposed solution returns near-optimal paths with higher success rate, even for challenging non-monotone instances, than other leading alternatives. 
    more » « less
  5. null (Ed.)
    Motion planning for high degree-of-freedom (DOF) robots is challenging, especially when acting in complex environments under sensing uncertainty. While there is significant work on how to plan under state uncertainty for low-DOF robots, existing methods cannot be easily translated into the high-DOF case, due to the complex geometry of the robot’s body and its environment. In this paper, we present a method that enhances optimization-based motion planners to produce robust trajectories for high-DOF robots for convex obstacles. Our approach introduces robustness into planners that are based on sequential convex programming: We reformulate each convex subproblem as a robust optimization problem that “protects” the solution against deviations due to sensing uncertainty. The parameters of the robust problem are estimated by sampling from the distribution of noisy obstacles, and performing a first-order approximation of the signed distance function. The original merit function is updated to account for the new costs of the robust formulation at every step. The effectiveness of our approach is demonstrated on two simulated experiments that involve a full body square robot, that moves in randomly generated scenes, and a 7-DOF Fetch robot, performing tabletop operations. The results show nearly zero probability of collision for a reasonable range of the noise parameters for Gaussian and Uniform uncertainty. 
    more » « less