skip to main content

Title: Connected Reconfiguration of Polyominoes Amid Obstacles using RRT
This paper investigates using a sampling-based approach, the RRT*, to reconfigure a 2D set of connected tiles in complex environments, where multiple obstacles might be present. Since the target application is automated building of discrete, cellular structures using mobile robots, there are constraints that determine what tiles can be picked up and where they can be dropped off during reconfiguration. We compare our approach to two algorithms as global and local planners, and show that we are able to find more efficient build sequences using a reasonable amount of samples, in environments with varying degrees of obstacle space.  more » « less
Award ID(s):
2130793 1553063 1849303
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Page Range / eLocation ID:
6554 to 6560
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Convolutional neural networks (CNNs) are becoming an increasingly popular approach for classification mapping of large complex regions where manual data collection is too time consuming. Stream boundaries in hyper-arid polar regions such as the McMurdo Dry Valleys (MDVs) in Antarctica are difficult to locate because they have little hydraulic flow throughout the short summer months. This paper utilizes a U-Net CNN to map stream boundaries from lidar derived rasters in Taylor Valley located within the MDVs, covering ∼770 km2. The training dataset consists of 217 (300 × 300 m2) well-distributed tiles of manually classified stream boundaries with diverse geometries (straight, sinuous, meandering, and braided) throughout the valley. The U-Net CNN is trained on elevation, slope, lidar intensity returns, and flow accumulation rasters. These features were used for detection of stream boundaries by providing potential topographic cues such as inflection points at stream boundaries and reflective properties of streams such as linear patterns of wetted soil, water, or ice. Various combinations of these features were analyzed based on performance. The test set performance revealed that elevation and slope had the highest performance of the feature combinations. The test set performance analysis revealed that the CNN model trained with elevation independently received a precision, recall, and F1 score of 0.94±0.05, 0.95±0.04, and 0.94±0.04 respectively, while slope received 0.96±0.03, 0.93±0.04, and 0.94±0.04, respectively. The performance of the test set revealed higher stream boundary prediction accuracies along the coast, while inland performance varied. Meandering streams had the highest stream boundary prediction performance on the test set compared to the other stream geometries tested here because meandering streams are further evolved and have more distinguishable breaks in slope, indicating stream boundaries. These methods provide a novel approach for mapping stream boundaries semi-automatically in complex regions such as hyper-arid environments over larger scales than is possible for current methods. 
    more » « less
  2. Domain-specific languages that execute image processing pipelines on GPUs, such as Halide and Forma, operate by 1) dividing the image into overlapped tiles, and 2) fusing loops to improve memory locality. However, current approaches have limitations: 1) they require intra thread block synchronization, which has a nontrivial cost, 2) they must choose between small tiles that require more overlapped computations or large tiles that increase shared memory access (and lowers occupancy), and 3) their autoscheduling algorithms use simplified GPU models that can result in inefficient global memory accesses. We present a new approach for executing image processing pipelines on GPUs that addresses these limitations as follows. 1) We fuse loops to form overlapped tiles that fit in a single warp, which allows us to use lightweight warp synchronization. 2) We introduce hybrid tiling, which stores overlapped regions in a combination of thread-local registers and shared memory. Thus hybrid tiling either increases occupancy by decreasing shared memory usage or decreases overlapping computations using larger tiles. 3) We present an automatic loop fusion algorithm that considers several factors that affect the performance of GPU kernels. We implement these techniques in PolyMage-GPU, which is a new GPU backend for PolyMage. Our approach produces code that is faster than Halide's manual schedules: 1.65x faster on an NVIDIA GTX 1080Ti and 1.33x faster on an NVIDIA Tesla V100. 
    more » « less
  3. null (Ed.)

    Cooperative 3D printing (C3DP) is a novel approach to additive manufacturing, where multiple mobile 3D printing robots work together cooperatively to print the desired part. At the core of C3DP lies the chunk-based printing strategy. This strategy splits the desired part into smaller chunks, and then the chunks are assigned and scheduled to be printed by individual printing robots. In our previous work, we presented various hardware and software components of C3DP, such as mobile 3D printers, chunk-based slicing, scheduling, and simulation. In this study, we present a fully integrated and functional C3DP platform with all necessary components, including chunker, slicer, scheduler, printing robots, build floor, and outline how they work in unison from a system-level perspective. To realize C3DP, new developments of both hardware and software are presented, including new chunking approaches, scalable scheduler for multiple robots, SCARA-based printing robots, a mobile platform for transporting printing robots, modular floor tiles, and a charging station for the mobile platform. Finally, we demonstrate the capability of the system using two case studies. In these demonstrations, a CAD model of a part is fed to the chunker, divided into smaller chunks, passed to the scheduler, and assigned and scheduled to be printed by the scheduler with a given number of robots. The slicer generates G-code for each of the chunks and combines G-code into one file for each robot. The simulator then uses the G-code generated by the slicer to generate animations for visualization purposes.

    more » « less
  4. Lung squamous cell carcinoma (LSCC) has a high recurrence and metastasis rate. Factors influencing recurrence and metastasis are currently unknown and there are no distinct histopathological or morphological features indicating the risks of recurrence and metastasis in LSCC. Our study focuses on the recurrence prediction of LSCC based on H&E-stained histopathological whole-slide images (WSI). Due to the small size of LSCC cohorts in terms of patients with available recurrence information, standard end-to-end learning with various convolutional neural networks for this task tends to overfit. Also, the predictions made by these models are hard to interpret. Histopathology WSIs are typically very large and are therefore processed as a set of smaller tiles. In this work, we propose a novel conditional self-supervised learning (SSL) method to learn representations of WSI at the tile level first, and leverage clustering algorithms to identify the tiles with similar histopathological representations. The resulting representations and clusters from self-supervision are used as features of a survival model for recurrence prediction at the patient level. Using two publicly available datasets from TCGA and CPTAC, we show that our LSCC recurrence prediction survival model outperforms both LSCC pathological stage-based approach and machine learning baselines such as multiple instance learning. The proposed method also enables us to explain the recurrence histopathological risk factors via the derived clusters. This can help pathologists derive new hypotheses regarding morphological features associated with LSCC recurrence. 
    more » « less
  5. The most common approach to air cooling of data centers involves the pressurization of the plenum beneath the raised floor and delivery of air flow to racks via perforated floor tiles. This cooling approach is thermodynamically inefficient due in large part to the pressure losses through the tiles. Furthermore, it is difficult to control flow at the aisle and rack level since the flow source is centralized rather than distributed. Distributed cooling systems are more closely coupled to the heat generating racks. In overhead cooling systems, one can distribute flow to distinct aisles by placing the air mover and water cooled heat exchanger directly above an aisle. Two arrangements are possible: (i.) placing the air mover and heat exchanger above the cold aisle and forcing downward flow of cooled air into the cold aisle (Overhead Downward Flow (ODF)), or (ii.) placing the air mover and heat exchanger above the hot aisle and forcing heated air upwards from the hot aisle through the water cooled heat exchanger (Overhead Upward Flow (OUF)). This study focuses on the steady and transient behavior of overhead cooling systems in both ODF and OUF configurations and compares their cooling effectiveness and energy efficiency. The flow and heat transfer inside the servers and heat exchangers are modeled using physics based approaches that result in differential equation based mathematical descriptions. These models are programmed in the MATLAB™ language and embedded within a CFD computational environment (using the commercial code FLUENT™) that computes the steady or instantaneous airflow distribution. The complete computational model is able to simulate the complete flow and thermal field in the airside, the instantaneous temperatures within and pressure drops through the servers, and the instantaneous temperatures within and pressure drops through the overhead cooling system. Instantaneous overall energy consumption (1st Law) and exergy destruction (2nd Law) were used to quantify overall energy efficiency and to identify inefficiencies within the two systems. The server cooling effectiveness, based on an effectiveness-NTU model for the servers, was used to assess the cooling effectiveness of the two overhead cooling approaches 
    more » « less