skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hybrid Organic–Inorganic Halides (C 5 H 7 N 2 ) 2 MBr 4 (M = Hg, Zn) with High Color Rendering Index and High-Efficiency White-Light Emission
Award ID(s):
1726630
PAR ID:
10106652
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Chemistry of Materials
Volume:
31
Issue:
8
ISSN:
0897-4756
Page Range / eLocation ID:
2983 to 2991
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Magnetic and electronic properties of quantum materials heavily rely on the crystal structure even in the same chemical compositions. In this study, it is demonstrated that a layered tetragonal EuCd 2 Sb 2 structure can be obtained by treating bulk trigonal EuCd 2 Sb 2 under high pressure (6 GPa) and high temperature (600 °C). Magnetization measurements of the newly formed layered tetragonal EuCd 2 Sb 2 confirm an antiferromagnetic ordering with Neel temperature ( T N ) around 16 K, which is significantly higher than that ( T N ≈ 7 K) of trigonal EuCd 2 Sb 2 , consistent with heat capacity measurements. Moreover, bad metal behavior is observed in the temperature dependence of the electrical resistivity and the resistivity shows a dramatic increase around the Neel temperature. Electronic structure calculations with local density approximation dynamic mean–field theory (LDA+DMFT) show that this material is strongly correlated with well‐formed large magnetic moments, due to Hund's coupling, which is known to dramatically suppress the Kondo scale. 
    more » « less
  2. Abstract High‐temperature, high‐velocity water vapor (steam‐jet) exposures were conducted on Y2O3, Y2SiO5, Y2Si2O7, and SiO2for 60 hours at 1400°C. Volatility of Y2O3was not observed. Phase‐pure Y2SiO5exhibited SiO2loss forming Y2O3and porosity. A mixed porous and dense Y2SiO5layer formed on the surface of Y2Si2O7due to SiO2depletion. The mechanisms and kinetics of the reaction between SiO2and H2O(g) to form Si(OH)4(g) from Y2SiO5, Y2Si2O7, and SiO2are discussed. 
    more » « less
  3. Metal-free carbon materials have emerged as cost-effective and high-performance catalysts for the production of hydrogen peroxide (H 2 O 2 ) through the two-electron oxygen reduction reaction (ORR). Here, we show that 3D crumpled graphene with controlled oxygen and defect configurations significantly improves the electrocatalytic production of H 2 O 2 . The crumpled graphene electrocatalyst with optimal defect structures and oxygen functional groups exhibits outstanding H 2 O 2 selectivity of 92–100% in a wide potential window of 0.05–0.7 V vs. reversible hydrogen electrode (RHE) and a high mass activity of 158 A g −1 at 0.65 V vs. RHE in alkaline media. In addition, the crumpled graphene catalyst showed an excellent H 2 O 2 production rate of 473.9 mmol gcat −1 h −1 and stability over 46 h at 0.4 V vs. RHE. Moreover, density functional theory calculations revealed the role of the functional groups and defect sites in the two-electron ORR pathway through the scaling relation between OOH and O adsorption strengths. These results establish a structure-mechanism-performance relationship of functionalized carbon catalysts for the effective production of H 2 O 2 . 
    more » « less