High-Performance WS 2 MOSFETs with Bilayer WS 2 Contacts
- Award ID(s):
- 2011401
- PAR ID:
- 10522540
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Omega
- Volume:
- 9
- Issue:
- 29
- ISSN:
- 2470-1343
- Format(s):
- Medium: X Size: p. 32159-32166
- Size(s):
- p. 32159-32166
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract The field of photovoltaics is revolutionized in recent years by the development of two–dimensional (2D) type‐II heterostructures. These heterostructures are made up of two different materials with different electronic properties, which allows for the capture of a broader spectrum of solar energy than traditional photovoltaic devices. In this study, the potential of vanadium (V)‐doped WS2is investigated, hereafter labeled V‐WS2, in combination with air‐stable Bi2O2Se for use in high‐performance photovoltaic devices. Various techniques are used to confirm the charge transfer of these heterostructures, including photoluminescence (PL) and Raman spectroscopy, along with Kelvin probe force microscopy (KPFM). The results show that the PL is quenched by 40%, 95%, and 97% for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se, and 2 at.% V‐WS2/Bi2O2Se, respectively, indicating a superior charge transfer in V‐WS2/Bi2O2Se compared to pristine WS2/Bi2O2Se. The exciton binding energies for WS2/Bi2O2Se, 0.4 at.% V‐WS2/Bi2O2Se and 2 at.% V‐WS2/Bi2O2Se heterostructures are estimated to be ≈130, 100, and 80 meV, respectively, which is much lower than that for monolayer WS2. These findings confirm that by incorporating V‐doped WS2, charge transfer in WS2/Bi2O2Se heterostructures can be tuned, providing a novel light‐harvesting technique for the development of the next generation of photovoltaic devices based on V‐doped transition metal dichalcogenides (TMDCs)/Bi2O2Se.more » « less
-
Atmospheric nitrogen fixation using a photocatalytic system is a promising approach to produce ammonia. However, most of the recently explored photocatalysts for N 2 fixation are in the powder form, suffering from agglomeration and difficulty in the collection and leading to unsatisfactory conversion efficiency. Developing efficient film catalysts for N 2 photofixation under ambient conditions remains challenging. Herein, we report the efficient photofixation of N 2 over a periodic WS 2 @TiO 2 nanoporous film, which is fabricated through a facile method that combines anodization, E-beam evaporation, and chemical vapor deposition (CVD). Oxygen vacancies are introduced into TiO 2 nanoporous films through Ar annealing treatment, which plays a vital role in N 2 adsorption and activation. The periodic WS 2 @TiO 2 nanoporous film with an optimized WS 2 content shows highly efficient photocatalytic performance for N 2 fixation with an NH 3 evolution rate of 1.39 mmol g −1 h −1 , representing one of the state-of-the-art catalysts.more » « less
An official website of the United States government
