skip to main content

Search for: All records

Award ID contains: 1726630

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the crystal of the title compound, C 6 H 6 F 8 O 4 , O—H...O hydrogen bonds involving the hydroxy groups connect the molecules, forming a two-dimensional network parallel to (100). These hydrogen-bonding interactions appear to drive the O—C—C—O torsion angles into a gauche – trans – trans series of conformations along the backbone of the molecule.
  2. Abstract

    Some bacterial heme proteins catalyze the coupling of two NO molecules to generate N2O. We previously reported that a heme Fe–NO model engages in this N−N bond‐forming reaction with NO. We now demonstrate that (OEP)CoII(NO) similarly reacts with 1 equiv of NO in the presence of the Lewis acids BX3(X=F, C6F5) to generate N2O. DFT calculations support retention of the CoIIoxidation state for the experimentally observed adduct (OEP)CoII(NO⋅BF3), the presumed hyponitrite intermediate (P.+)CoII(ONNO⋅BF3), and the porphyrin π‐radical cation by‐product of this reaction, and that the π‐radical cation formation likely occurs at the hyponitrite stage. In contrast, the Fe analogue undergoes a ferrous‐to‐ferric oxidation state conversion during this reaction. Our work shows that cobalt hemes are chemically competent to engage in the NO‐to‐N2O conversion reaction.

  3. Abstract

    All‐inorganic metal halides such as Cs4PbX6and CsPbX3(X = Cl, Br, and I) are attracting global attention owing to their promise in optoelectronic applications. However, the presence of the toxic heavy metal lead (Pb) in these materials is a major concern. Here, a family of nontoxic high‐efficiency blue‐emitting all‐inorganic halides Rb2CuX3(X = Br and Cl) is reported; the compounds exhibit 1D crystal structures featuring anionic2−ribbons separated by Rb+cations. The measured record high photoluminescence quantum yield values range from 64% to 100% for Rb2CuBr3and Rb2CuCl3, respectively. Furthermore, the measured emission linewidths are quite narrow with full width at half maximum values of 54 and 52 nm for Rb2CuBr3and Rb2CuCl3, respectively. Single crystals of Rb2CuCl3demonstrate an anti‐Stokes photoluminescence signal, shown for the first time for Pb‐free metal halides. The discovery of highly efficient narrow blue emitters based on a nontoxic and inexpensive metal copper paves a way for the consideration of low‐cost and environmentally friendly copper halides for practical applications.