Deep reinforcement learning (RL) has led to encouraging successes in numerous challenging robotics applications. However, the lack of inductive biases to support logic deduction and generalization in the representation of a deep RL model causes it less effective in exploring complex long-horizon robot-control tasks with sparse reward signals. Existing program synthesis algorithms for RL problems inherit the same limitation, as they either adapt conventional RL algorithms to guide program search or synthesize robot-control programs to imitate an RL model. We propose ReGuS, a reward-guided synthesis paradigm, to unlock the potential of program synthesis to overcome the exploration challenges. We develop a novel hierarchical synthesis algorithm with decomposed search space for loops, on-demand synthesis of conditional statements, and curriculum synthesis for procedure calls, to effectively compress the exploration space for long-horizon, multi-stage, and procedural robot-control tasks that are difficult to address by conventional RL techniques. Experiment results demonstrate that ReGuS significantly outperforms state-of-the-art RL algorithms and standard program synthesis baselines on challenging robot tasks including autonomous driving, locomotion control, and object manipulation. CCS Concepts: •Software and its engineering → Automatic programming.
more »
« less
Efficient Symbolic Reactive Synthesis for Finite-Horizon Tasks
When humans and robots perform complex tasks together, the robot must have a strategy to choose its actions based on observed human behavior. One well-studied approach for finding such strategies is reactive synthesis. Existing approaches for finite-horizon tasks have used an explicit state approach, which incurs high runtime. In this work, we present a compositional approach to perform synthesis for finite-horizon tasks based on binary decision diagrams. We show that for pick-and-place tasks, the compositional approach achieves orders-of-magnitude speed-ups compared to previous approaches. We demonstrate the synthesized strategy on a UR5 robot.
more »
« less
- Award ID(s):
- 1830549
- PAR ID:
- 10106655
- Date Published:
- Journal Name:
- 2019 International Conference on Robotics and Automation
- Page Range / eLocation ID:
- 8993–8999
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper we propose a new framework—MoViLan (Modular Vision and Language) for execution of visually grounded natural language instructions for day to day indoor household tasks. While several data-driven, end-to-end learning frameworks have been proposed for targeted navigation tasks based on the vision and language modalities, performance on recent benchmark data sets revealed the gap in developing comprehensive techniques for long horizon, compositional tasks (involving manipulation and navigation) with diverse object categories, realistic instructions and visual scenarios with non reversible state changes. We propose a modular approach to deal with the combined navigation and object interaction problem without the need for strictly aligned vision and language training data (e.g., in the form of expert demonstrated trajectories). Such an approach is a significant departure from the traditional end-to-end techniques in this space and allows for a more tractable training process with separate vision and language data sets. Specifically, we propose a novel geometry-aware mapping technique for cluttered indoor environments, and a language understanding model generalized for household instruction following. We demonstrate a significant increase in success rates for long horizon, compositional tasks over recent works on the recently released benchmark data set -ALFRED.more » « less
-
The recent wave of large-scale text-to-image diffusion models has dramatically increased our text-based image generation abilities. These models can generate realistic images for a staggering variety of prompts and exhibit impressive compositional generalization abilities. Almost all use cases thus far have solely focused on sampling; however, diffusion models can also provide conditional density estimates, which are useful for tasks beyond image generation. In this paper, we show that the density estimates from large-scale text-to-image diffusion models like Stable Diffusion can be leveraged to perform zero-shot classification without any additional training. Our generative approach to classification, which we call Diffusion Classifier, attains strong results on a variety of benchmarks and outperforms alternative methods of extracting knowledge from diffusion models. Although a gap remains between generative and discriminative approaches on zero-shot recognition tasks, our diffusion-based approach has significantly stronger multimodal compositional reasoning ability than competing discriminative approaches. Finally, we use Diffusion Classifier to extract standard classifiers from class-conditional diffusion models trained on ImageNet. Our models achieve strong classification performance using only weak augmentations and exhibit qualitatively better "effective robustness" to distribution shift. Overall, our results are a step toward using generative over discriminative models for downstream tasks.more » « less
-
Many data processing systems allow SQL queries that calluser-defined functions (UDFs)written in conventional programming languages. While such SQL extensions provide convenience and flexibility to users, queries involving UDFs are not as efficient as their pure SQL counterparts that invoke SQL’s highly-optimized built-in functions. Motivated by this problem, we propose a new technique for translating SQL queries with UDFs to pure SQL expressions. Unlike prior work in this space, our method is not based on syntactic rewrite rules and can handle a much more general class of UDFs. At a high-level, our method is based on counterexample-guided inductive synthesis (CEGIS) but employs a novel compositional strategy that decomposes the synthesis task into simpler sub-problems. However, because there is no universal decomposition strategy that works for all UDFs, we propose a novellazy inductive synthesisapproach that generates a sequence of decompositions that correspond to increasingly harder inductive synthesis problems. Because most realistic UDF-to-SQL translation tasks are amenable to a fine-grained decomposition strategy, our lazy inductive synthesis method scales significantly better than traditional CEGIS. We have implemented our proposed technique in a tool called CLIS for optimizing Spark SQL programs containing Scala UDFs. To evaluate CLIS, we manually study 100 randomly selected UDFs and find that 63 of them can be expressed in pure SQL. Our evaluation on these 63 UDFs shows that CLIS can automatically synthesize equivalent SQL expressions in 92% of the cases and that it can solve 2.4× more benchmarks compared to a baseline that does not use our compositional approach. We also show that CLIS yields an average speed-up of 3.5× for individual UDFs and 1.3× to 3.1× in terms of end-to-end application performance.more » « less
-
Robot manipulation in cluttered environments of-ten requires complex and sequential rearrangement of multiple objects in order to achieve the desired reconfiguration of the target objects. Due to the sophisticated physical interactions involved in such scenarios, rearrangement-based manipulation is still limited to a small range of tasks and is especially vulnerable to physical uncertainties and perception noise. This paper presents a planning framework that leverages the efficiency of sampling-based planning approaches, and closes the manipulation loop by dynamically controlling the planning horizon. Our approach interleaves planning and execution to progressively approach the manipulation goal while correcting any errors or path deviations along the process. Meanwhile, our framework allows the definition of manipulation goals without requiring explicit goal configurations, enabling the robot to flexibly interact with all objects to facilitate the manipulation of the target ones. With extensive experiments both in simulation and on a real robot, we evaluate our framework on three manipulation tasks in cluttered environments: grasping, relocating, and sorting. In comparison with two baseline approaches, we show that our framework can significantly improve planning efficiency, robustness against physical uncertainties, and task success rate under limited time budgets.more » « less
An official website of the United States government

