skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coordinated pitch and torque control of wind farms for power tracking
Improved integration of wind farms into frequency regulation services is vital for increasing renewable energy production while ensuring power system stability. This work generalizes a recently proposed model-based receding horizon wind farm controller for secondary frequency regulation to arbitrary wind farm layouts and augments the controller to enable power modulation through storage of kinetic energy in the rotor. The new design explicitly includes actuation of blade pitch and generator torque, which facilitates implementation in existing farms as it takes advantage of current wind turbine control loops. This generalized control design improves control authority by individually controlling each turbine and using kinetic energy stored in the rotor in a coordinated manner to achieve farm level control goals. Numerical results demonstrate the effectiveness of this approach; in particular, the controller achieves accurate power tracking and reduces loss of revenue in the bulk power market by requiring less setpoint reduction (derate) than the power level control range.  more » « less
Award ID(s):
1635430
PAR ID:
10106867
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceeding of the American Control Conference
Page Range / eLocation ID:
688 to 694
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Power tracking is an emerging application for wind farm control designs that allows farms to participate in a wider range of grid services, such as secondary frequency regulation. Control designs that enable large wind farms to follow a time-varying power trajectory are complicated by aerodynamic interactions that make it impossible to decouple upstream wind turbine control actions from downstream power production. This coupling is particularly important in applications where the reference trajectory is changing faster than, or at a similar rate as, the propagation of turbine wakes through the farm. In this work we overcome these difficulties by using a dynamic wake model that accounts for wake expansion, advection, and multi-wake interactions within a model-based receding horizon controller for coordinated control of a large multi-turbine wind farm. An ensemble Kalman filter is employed for state estimation and error correction at the turbine level. We implement the controller in high-fidelity numerical simulations of a wind farm with 84 turbines and then test the controlled farm's ability to track a power reference signal. The results demonstrate the ability of the control algorithm to track two types of power reference signals used by a US independent system operator. 
    more » « less
  2. This paper is an extended version of our paper presented at the 2016 TORQUE conference (Shapiro et al., 2016). We investigate the use of wind farms to provide secondary frequency regulation for a power grid using a model-based receding horizon control framework. In order to enable real-time implementation, the control actions are computed based on a time-varying one-dimensional wake model. This model describes wake advection and wake interactions, both of which play an important role in wind farm power production. In order to test the control strategy, it is implemented in a large-eddy simulation (LES) model of an 84-turbine wind farm using the actuator disk turbine representation. Rotor-averaged velocity measurements at each turbine are used to provide feedback for error correction. The importance of including the dynamics of wake advection in the underlying wake model is tested by comparing the performance of this dynamic-model control approach to a comparable static-model control approach that relies on a modified Jensen model. We compare the performance of both control approaches using two types of regulation signals, RegA and RegD, which are used by PJM, an independent system operator in the eastern United States. The poor performance of the static-model control relative to the dynamic-model control demonstrates that modeling the dynamics of wake advection is key to providing the proposed type of model-based coordinated control of large wind farms. We further explore the performance of the dynamic-model control via composite performance scores used by PJM to qualify plants for regulation services or markets. Our results demonstrate that the dynamic-model-controlled wind farm consistently performs well, passing the qualification threshold for all fast-acting RegD signals. For the RegA signal, which changes over slower timescales, the dynamic-model control leads to average performance that surpasses the qualification threshold, but further work is needed to enable this controlled wind farm to achieve qualifying performance for all regulation signals. 
    more » « less
  3. null (Ed.)
    This work focuses on the optimization of performance and profitability of a wind farm carried out by means of an economic model and Reynolds-Averaged Navier-Stokes (RANS) simulations of wind turbine wakes. Axisymmetric RANS simulations of isolated wind turbine wakes are leveraged with a quadratic super-positioning model to estimate wake interactions within wind farms. The resulting velocity field is used with an actuator disk model to predict power production from each turbine in the wind farm. Design optimization is performed by considering a site in North Texas, whose wind resource statistics are obtained from a meteorological tower. The RANS solver provides capabilities to simulate different incoming wind turbulence intensities and, hence, the wind farm optimization is performed by taking the daily cycle of the atmospheric stability into account. The objective functional of the optimization problem is the levelized cost of energy (LCoE) encompassing capital cost, operation and maintenance costs, land cost and annual power production. At the first level of the optimization problem, the wind farm gross capacity is determined by considering three potential turbine types with different rated power. Subsequently, the optimal wind farm layout is estimated by varying the uniform spacing between consecutive turbine rows. It is found that increasing turbine rated power, the wind farm profitability is enhanced. Substituting a wind farm of 24 turbines of 2.3-MW rated power with 18, 3-MW turbines could reduce the LCoE of about 1.56 $/MWh, while maintaining a similar gross capacity factor. The optimization of the spacing between turbine rows was found to be sensitive to the land cost. For a land cost of 0.05 $/m2, the layout could be designed with a spacing between 6 to 15 rotor diameters without any significant effect on the LCoE, while an increased land cost of 0.1 $/m2 leads to an optimal spacing of about 6 rotor diameters. 
    more » « less
  4. Abstract This study explores the effects of various parameters on wake interactions between offshore wind farms, with a particular focus on the Revolution-Southfork Wind and Vineyard Wind projects. The research examines how factors such as Euclidean distances, turbine-rated power, rotor diameters, and the number of turbines at upstream farms impact the annual energy production (AEP) of downstream installations. The results reveal significant variations in AEP losses, with the Nygaard model demonstrating a marked sensitivity to changes in turbine-rated power, rotor diameter, and the differing Euclidean distances between farms. Our findings indicate that strategic planning regarding turbine characteristics and farm placements is essential for optimizing energy output and reducing wake-induced power losses. These insights lay the groundwork for further analytical research. 
    more » « less
  5. Wind turbine control via concurrent yaw misalignment and axial induction control has demonstrated potential for improving wind farm power output and mitigating structural loads. However, the complex aerodynamic interplay between these two effects requires deeper investigation. This study presents a modified blade element momentum (BEM) model that matches rotor-averaged quantities to an actuator disk model of yawed rotor induction, enabling analysis of joint yaw-induction control using realistic turbine control inputs. The BEM approach reveals that common torque control strategies such as K−Ω^2 exhibit sub-optimal performance under yawed conditions. Notably, the power-yaw and thrust-yaw sensitivities vary significantly depending on the chosen control strategy, contrary to common modeling assumptions. In the context of wind farm control, employing induction control which minimizes the thrust coefficient proves most effective at reducing wake strength for a given power output across all yaw angles. Results indicate that while yaw control deflects wakes effectively, induction control more directly influences wake velocity magnitude, underscoring their complementary effects. This study advances a fundamental understanding of turbine aerodynamic responses in yawed operation and sets the stage for modeling joint yaw and induction control in wind farms. 
    more » « less