skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: B-terminated (111) polar surfaces of BP and BAs: promising metal-free electrocatalysts with large reaction regions for nitrogen fixation
The nitrogen electroreduction reaction (NRR) in aqueous solutions under ambient conditions represents an attractive prospect to produce ammonia, but the development of long-term stable and low-cost catalysts with high-efficiency and high-selectivity remains a great challenge. Herein, we investigated the potential of a new class of experimentally available boron-containing materials, i.e. , cubic boron phosphide (BP) and boron arsenide (BAs), as metal-free NRR electrocatalysts by means of density functional theory (DFT) calculations. Our results revealed that gas phase N 2 can be sufficiently activated on the B-terminated (111) polar surfaces of BP and BAs, and effectively reduced to NH 3 via an enzymatic pathway with an extremely low limiting potential (−0.12 V on BP and −0.31 V on BAs, respectively). In particular, the two proposed B-terminated (111) surfaces not only have a large active region for N 2 reduction, but also can significantly inhibit the competitive hydrogen evolution reaction, and thus have rather high efficiency and selectivity for the NRR. Therefore, cubic BP or BAs with mainly exposed (111) facets may serve as promising metal-free NRR catalysts with superior performance.  more » « less
Award ID(s):
1736093
PAR ID:
10107001
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
7
Issue:
21
ISSN:
2050-7488
Page Range / eLocation ID:
13284 to 13292
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The development of low‐cost and efficient electrocatalysts for nitrogen reduction reaction (NRR) at ambient conditions is crucial for NH3synthesis and provides an alternative to the traditional Harber‐Bosch process. Herein, by means of density functional theory (DFT) computations, the catalytic performance of a series of single metal atoms supported on graphitic carbon nitride (g‐C3N4) for NRR is evaluated. Among all the candidates, the Gibbs free energy change of the potential‐determining step for five single‐atom catalysts (SACs), namely Ti, Co, Mo, W, and Pt atoms supported on g‐C3N4monolayer, is lower than that on the Ru(0001) stepped surface. In particular, the single tungsten (W) atom anchored on g‐C3N4(W@g‐C3N4) exhibits the highest catalytic activity toward NRR with a limiting potential of −0.35 V via associative enzymatic pathway, and can well suppress the competing hydrogen evolution reaction. The high NRR activity and selectivity of W@g‐C3N4are attributed to its inherent properties, such as significant positive charge and large spin moment on the W atom, excellent electrical conductivity, and moderate adsorption strength with NRR intermediates. This work opens up a new avenue of N2reduction for renewable energy supplies and helps guide future development of single‐atom catalysts for NRR and other related electrochemical process. 
    more » « less
  2. The electrocatalytic nitrogen reduction reaction (NRR) is of significant interest as an environmentally friendly method for NH 3 production for agricultural and clean energy applications. Selectivity of NRR vis-à-vis the hydrogen evolution reaction (HER), however, is thought to adversely impact many potential catalysts, including Earth-abundant transition metal oxynitrides. Relative HER/NRR selectivities are therefore directly compared for two transition metal oxynitrides with different metal oxophilicities—Co and V. Electrocatalytic current–potential measurements, operando fluorescence, absorption, and GC measurements of H 2 and NH 3 production, ex situ X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations are combined to directly compare NRR and HER activities under identical reaction conditions. Results show that cobalt oxynitrides – with Co primarily in the Co( ii ) oxidation state – are NRR active at pH 10, with electrochemical reduction of both lattice nitrogen and dissolved N 2 , the latter occurring without N incorporation into the lattice. Removal of lattice N then yields Co( ii ) oxide, which is still NRR active. These results are complemented by calculations showing that N 2 binding at Co( ii ) sites is energetically favored over binding at Co( iii ) sites. GC analysis demonstrates that H 2 production occurs in concert with ammonia production but at a far greater rate. In contrast, vanadium oxynitride films are HER inactive under the same (pH 10) conditions, as well as at pH 7, but are NRR active at pH 7. DFT calculations indicate that a major difference in the two materials is hindered O–H dissociation of H 2 O adsorbed at O-ligated Co vs. V cation centers. The combined studies indicate significant variation in HER vs. NRR selectivity as a function of employed transition metal oxynitrides, as well as different HER mechanisms in V and Co oxynitrides. 
    more » « less
  3. Abstract Ammonia (NH3) electrosynthesis gains significant attention as NH3is essentially important for fertilizer production and fuel utilization. However, electrochemical nitrogen reduction reaction (NRR) remains a great challenge because of low activity and poor selectivity. Herein, a new class of atomically dispersed Ni site electrocatalyst is reported, which exhibits the optimal NH3yield of 115 µg cm−2h−1at –0.8 V versus reversible hydrogen electrode (RHE) under neutral conditions. High faradic efficiency of 21 ± 1.9% is achieved at ‐0.2 V versus RHE under alkaline conditions, although the ammonia yield is lower. The Ni sites are stabilized with nitrogen, which is verified by advanced X‐ray absorption spectroscopy and electron microscopy. Density functional theory calculations provide insightful understanding on the possible structure of active sites, relevant reaction pathways, and confirm that the Ni‐N3sites are responsible for the experimentally observed activity and selectivity. Extensive controls strongly suggest that the atomically dispersed NiN3site‐rich catalyst provides more intrinsically active sites than those in N‐doped carbon, instead of possible environmental contamination. This work further indicates that single‐metal site catalysts with optimal nitrogen coordination is very promising for NRR and indeed improves the scaling relationship of transition metals. 
    more » « less
  4. The electrochemical nitrogen reduction reaction (NRR) is a promising route to enable carbon-free ammonia production. However, this reaction is limited by the poor activity and selectivity of current catalysts. The rational design of superior NRR electrocatalysts requires a detailed mechanistic understanding of current material limitations to inform how these might be overcome. The current understanding of how scaling limits NRR on metal catalysts is predicated on a simplified reaction pathway that considers only proton-coupled electron transfer (PCET) steps. Here, we apply grand-canonical density functional theory to investigate a more comprehensive NRR mechanism that includes both electrochemical and chemical steps on 30 metal surfaces in solvent under an applied potential. We applied Φmax, a grandcanonical adaptation of the Gmax thermodynamic descriptor, to evaluate trends in catalyst activity. This approach produces a Φmax “volcano” diagram for NRR activity scaling on metals that qualitatively differs from the scaling relations identified when only PCET steps are considered. NH3* desorption was found to limit the NRR activity for materials at the top of the volcano and truncate the volcano’s peak at increasingly reducing potentials. These revised scaling relations may inform the rational design of superior NRR electrocatalysts. This approach is transferable to study other materials and reaction chemistries where both electrochemical and chemical steps are modeled under an applied potential. 
    more » « less
  5. Abstract The electrocatalytic reduction of molecular nitrogen to ammonia—the nitrogen reduction reaction (NRR)—is of broad interest as an environmentally- and energy-friendly alternative to the Haber–Bosch process for agricultural and emerging energy applications. Herein, we review our recent findings from collaborative electrochemistry/surface science/theoretical studies that counter several commonly held assumptions regarding transition metal oxynitrides and oxides as NRR catalysts. Specifically, we find that for the vanadium oxide, vanadium oxynitride, and cobalt oxynitride systems, (a) there is no Mars–van Krevelen mechanism and that the reduction of lattice nitrogen and N2to NH3occurs by parallel reaction mechanisms at O-ligated metal sites without incorporation of N into the oxide lattice; and (b) that NRR and the hydrogen evolution reaction do occur in concert under the conditions studied for Co oxynitride, but not for V oxynitride. Additionally, these results highlight the importance of both O-ligation of the V or Co center for metal-binding of dinitrogen, and the importance of N in stabilizing the transition metal cation in an intermediate oxidation state, for effective N≡N bond activation. This review also highlights the importance and limitations ofex situandin situphotoemission—involving controlled transfer between ultra-high vacuum and electrochemistry environments, and ofoperandonear ambient pressure photoemission coupled within situstudies, in elucidating the complex chemistry relevant to the electrolyte/solid interface. 
    more » « less