skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamics of poles in two-dimensional hydrodynamics with free surface: new constants of motion
We address the problem of the potential motion of an ideal incompressible fluid with a free surface and infinite depth in a two-dimensional geometry. We admit the presence of gravity forces and surface tension. A time-dependent conformal mapping $z(w,t)$ of the lower complex half-plane of the variable $$w$$ into the area filled with fluid is performed with the real line of $$w$$ mapped into the free fluid’s surface. We study the dynamics of singularities of both $z(w,t)$ and the complex fluid potential $$\unicode[STIX]{x1D6F1}(w,t)$$ in the upper complex half-plane of $$w$$ . We show the existence of solutions with an arbitrary finite number $$N$$ of complex poles in $$z_{w}(w,t)$$ and $$\unicode[STIX]{x1D6F1}_{w}(w,t)$$ which are the derivatives of $z(w,t)$ and $$\unicode[STIX]{x1D6F1}(w,t)$$ over $$w$$ . We stress that these solutions are not purely rational because they generally have branch points at other positions of the upper complex half-plane. The orders of poles can be arbitrary for zero surface tension while all orders are even for non-zero surface tension. We find that the residues of $$z_{w}(w,t)$$ at these $$N$$ points are new, previously unknown, constants of motion, see also Zakharov & Dyachenko (2012, authors’ unpublished observations, arXiv:1206.2046 ) for the preliminary results. All these constants of motion commute with each other in the sense of the underlying Hamiltonian dynamics. In the absence of both gravity and surface tension, the residues of $$\unicode[STIX]{x1D6F1}_{w}(w,t)$$ are also the constants of motion while non-zero gravity $$g$$ ensures a trivial linear dependence of these residues on time. A Laurent series expansion of both $$z_{w}(w,t)$$ and $$\unicode[STIX]{x1D6F1}_{w}(w,t)$$ at each poles position reveals the existence of additional integrals of motion for poles of the second order. If all poles are simple then the number of independent real integrals of motion is $4N$ for zero gravity and $4N-1$ for non-zero gravity. For the second-order poles we found $6N$ motion integrals for zero gravity and $6N-1$ for non-zero gravity. We suggest that the existence of these non-trivial constants of motion provides an argument in support of the conjecture of complete integrability of free surface hydrodynamics in deep water. Analytical results are solidly supported by high precision numerics.  more » « less
Award ID(s):
1715323 1716822 1814619
PAR ID:
10107038
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
874
ISSN:
0022-1120
Page Range / eLocation ID:
891 to 925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the motion of ideal incompressible fluid with free surface. We analyzed the exact fluid dynamics through the time-dependent conformal mapping z=x+iy=z(w,t) of the lower complex half plane of the conformal variable w into the area occupied by fluid. We established the exact results on the existence vs. nonexistence of the pole and power law branch point solutions for 1/zw and the complex velocity. We also proved the nonexistence of the time-dependent rational solution of that problem for the second- and the first-order moving pole. 
    more » « less
  2. null (Ed.)
    Let $$f:X\rightarrow X$$ be a continuous dynamical system on a compact metric space $$X$$ and let $$\unicode[STIX]{x1D6F7}:X\rightarrow \mathbb{R}^{m}$$ be an $$m$$ -dimensional continuous potential. The (generalized) rotation set $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ is defined as the set of all $$\unicode[STIX]{x1D707}$$ -integrals of $$\unicode[STIX]{x1D6F7}$$ , where $$\unicode[STIX]{x1D707}$$ runs over all invariant probability measures. Analogous to the classical topological entropy, one can associate the localized entropy $$\unicode[STIX]{x210B}(w)$$ to each $$w\in \text{Rot}(\unicode[STIX]{x1D6F7})$$ . In this paper, we study the computability of rotation sets and localized entropy functions by deriving conditions that imply their computability. Then we apply our results to study the case where $$f$$ is a subshift of finite type. We prove that $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ is computable and that $$\unicode[STIX]{x210B}(w)$$ is computable in the interior of the rotation set. Finally, we construct an explicit example that shows that, in general, $$\unicode[STIX]{x210B}$$ is not continuous on the boundary of the rotation set when considered as a function of $$\unicode[STIX]{x1D6F7}$$ and $$w$$ . In particular, $$\unicode[STIX]{x210B}$$ is, in general, not computable at the boundary of $$\text{Rot}(\unicode[STIX]{x1D6F7})$$ . 
    more » « less
  3. Geometric, kinematic and dynamic properties of focusing deep-water surface gravity wave packets are examined in a simplified model with the intent of deriving a wave breaking threshold parameter. The model is based on the spatial modified nonlinear Schrödinger equation of Dysthe ( Proc. R. Soc. Lond.  A, vol. 369 (1736), 1979, pp. 105–114). The evolution of initially narrow-banded and weakly nonlinear chirped Gaussian wave packets are examined, by means of a trial function and a variational procedure, yielding analytic solutions describing the approximate evolution of the packet width, amplitude, asymmetry and phase during focusing. A model for the maximum free surface gradient, as a function of $$\unicode[STIX]{x1D716}$$ and $$\unicode[STIX]{x1D6E5}$$ , for $$\unicode[STIX]{x1D716}$$ the linear prediction of the maximum slope at focusing and $$\unicode[STIX]{x1D6E5}$$ the non-dimensional packet bandwidth, is proposed and numerically examined, indicating a quasi-self-similarity of these focusing events. The equations of motion for the fully nonlinear potential flow equations are then integrated to further investigate these predictions. It is found that a model of this form can characterize the bulk partitioning of $$\unicode[STIX]{x1D716}-\unicode[STIX]{x1D6E5}$$ phase space, between non-breaking and breaking waves, serving as a breaking criterion. Application of this result to better understanding air–sea interaction processes is discussed. 
    more » « less
  4. null (Ed.)
    A potential motion of ideal incompressible fluid with a free surface and infinite depth is considered in two-dimensional geometry. A time-dependent conformal mapping of the lower complex half-plane of the auxiliary complex variable w into the area filled with fluid is performed with the real line of w mapped into the free fluid’s surface. The fluid dynamics can be fully characterized by the motion of the complex singularities in the analytical continuation of both the conformal mapping and the complex velocity. We consider the short branch cut approximation of the dynamics with the small parameter being the ratio of the length of the branch cut to the distance between its centre and the real line of w . We found that the fluid dynamics in that approximation is reduced to the complex Hopf equation for the complex velocity coupled with the complex transport equation for the conformal mapping. These equations are fully integrable by characteristics producing the infinite family of solutions, including moving square root branch points and poles. These solutions involve practical initial conditions resulting in jets and overturning waves. The solutions are compared with the simulations of the fully nonlinear Eulerian dynamics giving excellent agreement even when the small parameter approaches about one. 
    more » « less
  5. For each $$t\in \mathbb{R}$$ , we define the entire function $$\begin{eqnarray}H_{t}(z):=\int _{0}^{\infty }e^{tu^{2}}\unicode[STIX]{x1D6F7}(u)\cos (zu)\,du,\end{eqnarray}$$ where $$\unicode[STIX]{x1D6F7}$$ is the super-exponentially decaying function $$\begin{eqnarray}\unicode[STIX]{x1D6F7}(u):=\mathop{\sum }_{n=1}^{\infty }(2\unicode[STIX]{x1D70B}^{2}n^{4}e^{9u}-3\unicode[STIX]{x1D70B}n^{2}e^{5u})\exp (-\unicode[STIX]{x1D70B}n^{2}e^{4u}).\end{eqnarray}$$ Newman showed that there exists a finite constant $$\unicode[STIX]{x1D6EC}$$ (the de Bruijn–Newman constant ) such that the zeros of $$H_{t}$$ are all real precisely when $$t\geqslant \unicode[STIX]{x1D6EC}$$ . The Riemann hypothesis is equivalent to the assertion $$\unicode[STIX]{x1D6EC}\leqslant 0$$ , and Newman conjectured the complementary bound $$\unicode[STIX]{x1D6EC}\geqslant 0$$ . In this paper, we establish Newman’s conjecture. The argument proceeds by assuming for contradiction that $$\unicode[STIX]{x1D6EC}<0$$ and then analyzing the dynamics of zeros of $$H_{t}$$ (building on the work of Csordas, Smith and Varga) to obtain increasingly strong control on the zeros of $$H_{t}$$ in the range $$\unicode[STIX]{x1D6EC} 
    more » « less