skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Local Koopman Operators for Data-Driven Control of Robotic Systems
This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopman-based LQR control.  more » « less
Award ID(s):
1717951 1715714
PAR ID:
10107045
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Robotics: science and systems
ISSN:
2330-7668
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0. 
    more » « less
  2. null (Ed.)
    Soft robots promise improved safety and capabil- ity over rigid robots when deployed in complex, delicate, and dynamic environments. However the infinite degrees of freedom and highly nonlinear dynamics of these systems severely com- plicate their modeling and control. As a step toward addressing this open challenge, we apply the data-driven, Hankel Dynamic Mode Decomposition (HDMD) with time delay observables to the model identification of a highly inertial, helical soft robotic arm with a high number of underactuated degrees of freedom. The resulting model is linear and hence amenable to control via a Linear Quadratic Regulator (LQR). Using our test bed device, a dynamic, lightweight pneumatic fabric arm with an inertial mass at the tip, we show that the combination of HDMD and LQR allows us to command our robot to achieve arbitrary poses using only open loop control. We further show that Koopman spectral analysis gives us a dimensionally reduced basis of modes which decreases computational complexity without sacrificing predictive power. 
    more » « less
  3. Koopman liftings have been successfully used to learn high dimensional linear approximations for autonomous systems for prediction purposes, or for control systems for leveraging linear control techniques to control nonlinear dynamics. In this paper, we show how learned Koopman approximations can be used for state-feedback correct-by-construction control. To this end, we introduce the Koopman over-approximation, a (possibly hybrid) lifted representation that has a simulation-like relation with the underlying dynamics. Then, we prove how successive application of controlled predecessor operation in the lifted space leads to an implicit backward reachable set for the actual dynamics. Finally, we demonstrate the approach on two nonlinear control examples with unknown dynamics. 
    more » « less
  4. This study presents a novel approach to optimal control utilizing a Koopman operator integrated with a linear quadratic regulator (LQR) to enhance the thermal management and power output efficiency of an open-cathode proton exchange membrane fuel cell (PEMFC) stack. First, a linear time-invariant dynamic model was derived through Koopman operator to forecast the behavior of the PEMFC stack. Second, this Koopman-based model was directly integrated with LQR for optimizing temperature, temperature variations, and output power efficiency of the PEMFC stack by regulating fan speed, with a physics-based model serving as the plant model. Finally, the performance of the Koopman-based LQRs (KLQR) was compared to a baseline proportional-integral (PI) controller across various ambient temperatures and operating conditions, focusing on temperature, temperature variations, and net power output. The results demonstrate the proposed Koopman-based approach can be seamless integration with linear optimal control algorithms, effectively minimizing temperature, temperature variations across the PEMFC stack, and the net power outputs under different ambient temperature and operating conditions. 
    more » « less
  5. The Koopman operator theory provides a global linearization framework for general nonlinear dynamics, offering significant advantages for system analysis and control. However, practical applications typically involve approximating the infinite-dimensional Koopman operator in a lifted space spanned by a finite set of observable functions. The accuracy of this approximation is the key to effective Koopman operator-based analysis and control methods, generally improving as the dimension of the observables increases. Nonetheless, this increase in dimensionality significantly escalates both storage requirements and computational complexity, particularly for high-dimensional systems, thereby limiting the applicability of these methods in real-world problems. In this paper, we address this problem by reformulating the Koopman operator in tensor format to break the curse of dimensionality associated with its approximation through tensor decomposition techniques. This effective reduction in complexity enables the selection of high-dimensional observable functions and the handling of large-scale datasets, which leads to a precise linear prediction model utilizing the tensor-based Koopman operator. Furthermore, we propose an optimal control framework with the tensor-based Koopman operator, which adeptly addresses the nonlinear dynamics and constraints by linear reformulation in the lifted space and significantly reduces the computational complexity through separated representation of the tensor structure. 
    more » « less