skip to main content


Search for: All records

Award ID contains: 1717951

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0. 
    more » « less
  2. Interest in soft robotics has increased in recent years due to their potential in a myriad of applications. A wide variety of soft robots has emerged, including bio-inspired robotic swimmers such as jellyfish, rays, and robotic fish. However, the highly nonlinear fluid-structure interactions pose considerable challenges in the analysis, modeling, and feedback control of these soft robotic swimmers. In particular, developing models that are of high fidelity but are also amenable to control for such robots remains an open problem. In this work, we pro- pose a data-driven approach that exploits Koopman operators to obtain a linear representation of the soft swimmer dynamics. Specifically, two methodologies are explored for obtaining the basis functions of the the operator, one based on data-based derivatives estimated using high-gain observers, and the other based on the dynamics structure of a tail-actuated rigid-body robotic fish. The resulting approximate finite-dimensional operators are trained and evaluated using data from high-fidelity CFD simulations that incorporate fluid-structure interactions. Validation results demonstrate that, while both methods are promising in producing control-oriented models, the approach based on derivative estimates shows higher accuracy in state prediction. 
    more » « less
  3. null (Ed.)
    Learning a stable Linear Dynamical System (LDS) from data involves creating models that both minimize reconstruction error and enforce stability of the learned representation. We propose a novel algorithm for learning stable LDSs. Using a recent characterization of stable matrices, we present an optimization method that ensures stability at every step and iteratively improves the reconstruction error using gradient directions derived in this paper. When applied to LDSs with inputs, our approach—in contrast to current methods for learning stable LDSs—updates both the state and control matrices, expanding the solution space and allowing for models with lower reconstruction error. We apply our algorithm in simulations and experiments to a variety of problems, including learning dynamic textures from image sequences and controlling a robotic manipulator. Compared to existing approaches, our proposed method achieves an orders-of-magnitude improvement in reconstruction error and superior results in terms of control performance. In addition, it is provably more memory efficient, with an O(n2) space complexity compared to O(n4) of competing alternatives, thus scaling to higher-dimensional systems when the other methods fail. The code of the proposed algorithm and animations of the results can be found at https: //github.com/giorgosmamakoukas/MemoryEfficientStableLDS. 
    more » « less
  4. This paper presents an adaptive, needle variation-based feedback scheme for controlling affine nonlinear systems with unknown parameters that appear linearly in the dynamics. The proposed approach combines an online parameter identifier with a second-order sequential action controller that has shown great promise for nonlinear, underactuated, and high-dimensional constrained systems. Simulation results on the dynamics of an underwater glider and robotic fish show the advantages of introducing online parameter estimation to the controller when the model parameters deviate from their true values or are completely unknown. 
    more » « less
  5. This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopman-based LQR control. 
    more » « less