skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring Machine Teaching for Object Recognition with the Crowd
Teachable interfaces can enable end-users to personalize machine learning applications by explicitly providing a few training examples. They promise higher robustness in the real world by significantly constraining conditions of the learning task to a specific user and their environment. While facilitating user control, their effectiveness can be hindered by lack of expertise or misconceptions. Through a mobile teachable testbed in Amazon Mechanical Turk, we explore how non-experts conceptualize, experience, and reflect on their engagement with machine teaching in the context of object recognition.  more » « less
Award ID(s):
1816380
PAR ID:
10107172
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems
Page Range / eLocation ID:
LBW0279:1 - LBW0279:6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Technological advances in computer vision and machine learning image and audio classification will continue to improve and evolve. Despite their prevalence, teachers feel ill-prepared to use these technologies to support their students’ learning. To address this, in-service middle school teachers participated in professional development, and middle school students participated in summer camp experiences that included the use of Google’s Teachable Machine, an easy-to-use interface for training machine learning classification models. An overview of Teachable Machine is provided. As well, lessons that highlight the use of Teachable Machine in middle school science are explained. Framed within Personal Construct Theory, an analysis of the impact of the professional development on middle school teachers’ perceptions (n = 17) of science lessons and activities is provided. Implications for future practice and future research are described. 
    more » « less
  2. Teachable interfaces can empower end-users to attune machine learning systems to their idiosyncratic characteristics and environment by explicitly providing pertinent training examples. While facilitating control, their effectiveness can be hindered by the lack of expertise or misconceptions. We investigate how users may conceptualize, experience, and reflect on their engagement in machine teaching by deploying a mobile teachable testbed in Amazon Mechanical Turk. Using a performance-based payment scheme, Mechanical Turkers (N=100) are called to train, test, and re-train a robust recognition model in real-time with a few snapshots taken in their environment. We find that participants incorporate diversity in their examples drawing from parallels to how humans recognize objects independent of size, viewpoint, location, and illumination. Many of their misconceptions relate to consistency and model capabilities for reasoning. With limited variation and edge cases in testing, the majority of them do not change strategies on a second training attempt. 
    more » « less
  3. Emphasizing problem formulation in AI literacy activities with children is vital, yet we lack empirical studies on their structure and affordances. We propose that participatory design involving teachable machines facilitates problem formulation activities. To test this, we integrated problem reduction heuristics into storyboarding and invited a university-based intergenerational design team of 10 children (ages 8-13) and 9 adults to co-design a teachable machine. We find that children draw from personal experiences when formulating AI problems; they assume voice and video capabilities, explore diverse machine learning approaches, and plan for error handling. Their ideas promote human involvement in AI, though some are drawn to more autonomous systems. Their designs prioritize values like capability, logic, helpfulness, responsibility, and obedience, and a preference for a comfortable life, family security, inner harmony, and excitement as end-states. We conclude by discussing how these results can inform the design of future participatory AI activities. 
    more » « less
  4. Teachable agents are pedagogical agents that employ the 'learning-by-teaching' strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a 'learning-by-teaching' experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence. 
    more » « less
  5. Teachable agents are pedagogical agents that employ the ‘learning-by-teaching’ strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a ‘learning-by-teaching’ experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence. 
    more » « less