Teachable interfaces can enable end-users to personalize machine learning applications by explicitly providing a few training examples. They promise higher robustness in the real world by significantly constraining conditions of the learning task to a specific user and their environment. While facilitating user control, their effectiveness can be hindered by lack of expertise or misconceptions. Through a mobile teachable testbed in Amazon Mechanical Turk, we explore how non-experts conceptualize, experience, and reflect on their engagement with machine teaching in the context of object recognition.
more »
« less
Crowdsourcing the Perception of Machine Teaching
Teachable interfaces can empower end-users to attune machine learning systems to their idiosyncratic characteristics and environment by explicitly providing pertinent training examples. While facilitating control, their effectiveness can be hindered by the lack of expertise or misconceptions. We investigate how users may conceptualize, experience, and reflect on their engagement in machine teaching by deploying a mobile teachable testbed in Amazon Mechanical Turk. Using a performance-based payment scheme, Mechanical Turkers (N=100) are called to train, test, and re-train a robust recognition model in real-time with a few snapshots taken in their environment. We find that participants incorporate diversity in their examples drawing from parallels to how humans recognize objects independent of size, viewpoint, location, and illumination. Many of their misconceptions relate to consistency and model capabilities for reasoning. With limited variation and edge cases in testing, the majority of them do not change strategies on a second training attempt.
more »
« less
- Award ID(s):
- 1816380
- PAR ID:
- 10180832
- Date Published:
- Journal Name:
- Proceedings of the 2020 {CHI} Conference on Human Factors in Computing System
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mitrovic, A.; & Bosch, N. (Ed.)Working collaboratively in groups can positively impact performance and student engagement. Intelligent social agents can provide a source of personalized support for students, and their benefits likely extend to collaborative settings, but it is difficult to determine how these agents should interact with students. Reinforcement learning (RL) offers an opportunity for adapting the interactions between the social agent and the students to better support collaboration and learning. However, using RL in education with social agents typically involves training using real students. In this work, we train an RL agent in a high-quality simulated environment to learn how to improve students’ collaboration. Data was collected during a pilot study with dyads of students who worked together to tutor an intelligent teachable robot. We explore the process of building an environment from the data, training a policy, and the impact of the policy on different students, compared to various baselines.more » « less
-
Federated learning allows multiple users to collaboratively train a shared classification model while preserving data privacy. This approach, where model updates are aggregated by a central server, was shown to be vulnerable to poisoning backdoor attacks : a malicious user can alter the shared model to arbitrarily classify specific inputs from a given class. In this article, we analyze the effects of backdoor attacks on federated meta-learning , where users train a model that can be adapted to different sets of output classes using only a few examples. While the ability to adapt could, in principle, make federated learning frameworks more robust to backdoor attacks (when new training examples are benign), we find that even one-shot attacks can be very successful and persist after additional training. To address these vulnerabilities, we propose a defense mechanism inspired by matching networks , where the class of an input is predicted from the similarity of its features with a support set of labeled examples. By removing the decision logic from the model shared with the federation, the success and persistence of backdoor attacks are greatly reduced.more » « less
-
Teachable agents are pedagogical agents that employ the 'learning-by-teaching' strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a 'learning-by-teaching' experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence.more » « less
-
Teachable agents are pedagogical agents that employ the ‘learning-by-teaching’ strategy, which facilitates learning by encouraging students to construct explanations, reflect on misconceptions, and elaborate on what they know. Teachable agents present unique opportunities to maximize the benefits of a ‘learning-by-teaching’ experience. For example, teachable agents can provide socio-emotional support to learners, influencing learner self-efficacy and motivation, and increasing learning. Prior work has found that a teachable agent which engages learners socially through social dialogue and paraverbal adaptation on pitch can have positive effects on rapport and learning. In this work, we introduce Emma, a teachable robotic agent that can speak socially and adapt on both pitch and loudness. Based on the phenomenon of entrainment, multi-feature adaptation on tone and loudness has been found in human-human interactions to be highly correlated to learning and social engagement. In a study with 48 middle school participants, we performed a novel exploration of how multi-feature adaptation can influence learner rapport and learning as an independent social behavior and combined with social dialogue. We found significantly more rapport for Emma when the robot both adapted and spoke socially than when Emma only adapted and indications of a similar trend for learning. Additionally, it appears that an individual’s initial comfort level with robots may influence how they respond to such behavior, suggesting that for individuals who are more comfortable interacting with robots, social behavior may have a more positive influence.more » « less
An official website of the United States government

