Children use popular web search tools, which are generally designed for adult users. Because children have different developmental needs than adults, these tools may not always adequately support their search for information. Moreover, even though search tools offer support to help in query formulation, these too are aimed at adults and may hinder children rather than help them. This calls for the examination of existing technologies in this area, to better understand what remains to be done when it comes to facilitating query-formulation tasks for young users. In this paper, we investigate interaction elements of query formulation--including query suggestion algorithms--for children. The primary goals of our research efforts are to: (i) examine existing plug-ins and interfaces that explicitly aid children's query formulation; (ii) investigate children's interactions with suggestions offered by a general-purpose query suggestion strategy vs. a counterpart designed with children in mind; and (iii) identify, via participatory design sessions, their preferences when it comes to tools / strategies that can help children find information and guide them through the query formulation process. Our analysis shows that existing tools do not meet children's needs and expectations; the outcomes of our work can guide researchers and developers as they implement query formulation strategies for children.
more »
« less
Exploring AI Problem Formulation with Children via Teachable Machines
Emphasizing problem formulation in AI literacy activities with children is vital, yet we lack empirical studies on their structure and affordances. We propose that participatory design involving teachable machines facilitates problem formulation activities. To test this, we integrated problem reduction heuristics into storyboarding and invited a university-based intergenerational design team of 10 children (ages 8-13) and 9 adults to co-design a teachable machine. We find that children draw from personal experiences when formulating AI problems; they assume voice and video capabilities, explore diverse machine learning approaches, and plan for error handling. Their ideas promote human involvement in AI, though some are drawn to more autonomous systems. Their designs prioritize values like capability, logic, helpfulness, responsibility, and obedience, and a preference for a comfortable life, family security, inner harmony, and excitement as end-states. We conclude by discussing how these results can inform the design of future participatory AI activities.
more »
« less
- PAR ID:
- 10522332
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9798400703300
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Location:
- Honolulu HI USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Technological advances in computer vision and machine learning image and audio classification will continue to improve and evolve. Despite their prevalence, teachers feel ill-prepared to use these technologies to support their students’ learning. To address this, in-service middle school teachers participated in professional development, and middle school students participated in summer camp experiences that included the use of Google’s Teachable Machine, an easy-to-use interface for training machine learning classification models. An overview of Teachable Machine is provided. As well, lessons that highlight the use of Teachable Machine in middle school science are explained. Framed within Personal Construct Theory, an analysis of the impact of the professional development on middle school teachers’ perceptions (n = 17) of science lessons and activities is provided. Implications for future practice and future research are described.more » « less
-
null (Ed.)Applications of generative models such as Generative Adversarial Networks (GANs) have made their way to social media platforms that children frequently interact with. While GANs are associated with ethical implications pertaining to children, such as the generation of Deepfakes, there are negligible efforts to educate middle school children about generative AI. In this work, we present a generative models learning trajectory (LT), educational materials, and interactive activities for young learners with a focus on GANs, creation and application of machine-generated media, and its ethical implications. The activities were deployed in four online workshops with 72 students (grades 5-9). We found that these materials enabled children to gain an understanding of what generative models are, their technical components and potential applications, and benefits and harms, while reflecting on their ethical implications. Learning from our findings, we propose an improved learning trajectory for complex socio-technical systems.more » « less
-
This study investigates how high school-aged youth engage in algorithm auditing to identify and understand biases in artificial intelligence and machine learning (AI/ML) tools they encounter daily. With AI/ML technologies being increasingly integrated into young people’s lives, there is an urgent need to equip teenagers with AI literacies that build both technical knowledge and awareness of social impacts. Algorithm audits (also called AI audits) have traditionally been employed by experts to assess potential harmful biases, but recent research suggests that non-expert users can also participate productively in auditing. We conducted a two-week participatory design workshop with 14 teenagers (ages 14–15), where they audited the generative AI model behind TikTok’s Effect House, a tool for creating interactive TikTok filters. We present a case study describing how teenagers approached the audit, from deciding what to audit to analyzing data using diverse strategies and communicating their results. Our findings show that participants were engaged and creative throughout the activities, independently raising and exploring new considerations, such as age-related biases, that are uncommon in professional audits. We drew on our expertise in algorithm auditing to triangulate their findings as a way to examine if the workshop supported participants to reach coherent conclusions in their audit. Although the resulting number of changes in race, gender, and age representation uncovered by the teens were slightly different from ours, we reached similar conclusions. This study highlights the potential for auditing to inspire learning activities to foster AI literacies, empower teenagers to critically examine AI systems, and contribute fresh perspectives to the study of algorithmic harms.more » « less
-
This study investigates how high school-aged youth engage in algorithm auditing to identify and understand biases in artificial intelligence and machine learning (AI/ML) tools they encounter daily. With AI/ML technologies being increasingly integrated into young people’s lives, there is an urgent need to equip teenagers with AI literacies that build both technical knowledge and awareness of social impacts. Algorithm audits (also called AI audits) have traditionally been employed by experts to assess potential harmful biases, but recent research suggests that non-expert users can also participate productively in auditing. We conducted a two-week participatory design workshop with 14 teenagers (ages 14–15), where they audited the generative AI model behind TikTok’s Effect House, a tool for creating interactive TikTok filters. We present a case study describing how teenagers approached the audit, from deciding what to audit to analyzing data using diverse strategies and communicating their results. Our findings show that participants were engaged and creative throughout the activities, independently raising and exploring new considerations, such as age-related biases, that are uncommon in professional audits. We drew on our expertise in algorithm auditing to triangulate their findings as a way to examine if the workshop supported participants to reach coherent conclusions in their audit. Although the resulting number of changes in race, gender, and age representation uncovered by the teens were slightly different from ours, we reached similar conclusions. This study highlights the potential for auditing to inspire learning activities to foster AI literacies, empower teenagers to critically examine AI systems, and contribute fresh perspectives to the study of algorithmic harms.more » « less
An official website of the United States government

