skip to main content


Title: Application-based QoE support with P4 and OpenFlow
Although Software-Defined Wide Area Networks (SD-WANs) are now widely deployed in several production networks, they are largely restricted to traffic engineering ap- proaches based on layer 4 (L4) of the network protocol stack. Such approaches result in improved Quality-of-Service (QoS) of the network overall without necessarily focussing on the requirements of a specific application. However, the emergence of application protocols such as QUIC and HTTP/2 needs an in- vestigation of layer 5-based (L5) approaches in order to improve users’ Quality-of-Experience (QoE). In this paper, we leverage the capabilities of flexible, P4-based switches that incorporate protocol-independent packet processing in order to intelligently route traffic based on application headers. We use Adaptive Bit Rate (ABR) video streaming as an example to show how such an approach can not only provide flexible traffic management but also improve application QoE. Our evaluation consists of an actual deployment in a research testbed, Chameleon, where we leverage the benefits of fast paths in order to retransmit video segments in higher qualities. Further, we analyze real-world ABR streaming sessions from a large-scale CDN and show that our approach can successfully maximize QoE for all users in the dataset.  more » « less
Award ID(s):
1743358
NSF-PAR ID:
10107210
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Conference on Computer Communications workshops
ISSN:
2159-4228
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying Internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype, we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, as opposed to IP-only, our hybrid setup achieves better average bitrate and better perceived visual quality (computed via VMAF metric) over live video streaming services. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE. 
    more » « less
  2. With live video streaming becoming accessible in various applications on all client platforms, it is imperative to create a seamless and efficient distribution system that is flexible enough to choose from multiple Internet architectures best suited for video streaming (live, on-demand, AR). In this paper, we highlight the benefits of such a hybrid system for live video streaming as well as present a detailed analysis with the goal to provide a high quality of experience (QoE) for the viewer. For our hybrid architecture, video streaming is supported simultaneously over TCP/IP and Named Data Networking (NDN)-based architecture via operating system and networking virtualization techniques to design a flexible system that utilizes the benefits of these varying internet architectures. Also, to relieve users from the burden of installing a new protocol stack (in the case of NDN) on their devices, we developed a lightweight solution in the form of a container that includes the network stack as well as the streaming application. At the client, the required Internet architecture (TCP/IP versus NDN) can be selected in a transparent and adaptive manner. Based on a prototype we have designed and implemented maintaining efficient use of network resources, we demonstrate that in the case of live streaming, NDN achieves better QoE per client than IP and can also utilize higher than allocated bandwidth through in-network caching. Even without caching, our hybrid setup achieves better average bitrate over live video streaming services than its IP-only alternative. Furthermore, we present detailed analysis on ways adaptive video streaming with NDN can be further improved with respect to QoE. 
    more » « less
  3. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate decisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video streaming. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming parameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR's deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less
  4. Adaptive bitrate (ABR) algorithms aim to make optimal bitrate de- cisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video stream- ing. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming pa- rameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR’s deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations. 
    more » « less
  5. The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2. 
    more » « less