skip to main content


Title: Eggshell Based Nano-Engineered Hydroxyapatite and Poly(lactic) Acid Electrospun Fibers as Potential Tissue Scaffold
Nanocomposite electrospun fibers were fabricated from poly(lactic) acid (PLA) and needle-like hydroxyapatite nanoparticles made from eggshells. The X-ray diffraction spectrum and the scanning electron micrograph showed that the hydroxyapatite particles are highly crystalline and are needle-liked in shape with diameters between 10 and 20 nm and lengths ranging from 100 to 200 nm. The microstructural, thermal, and mechanical properties of the electrospun fibers were characterized using scanning electron microscope (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and tensile testing techniques. The SEM study showed that both pristine and PLA/EnHA fibers surfaces exhibited numerous pores and rough edges suitable for cell attachment. The presence of the rod-liked EnHA particles was found to increase thermal and mechanical properties of PLA fibers relative to pristine PLA fibers. The confocal optical images showed that osteoblast cells were found to attach on dense pristine PLA and PLA/HA-10 wt% fibers after 48 hours of incubation. The stained confocal optical images indicated the secretion of cytoplasmic extension linking adjoining nuclei after 96 hours of incubation. These findings showed that eggshell based nanohydroxyapatite and poly(lactic acid) fibers could be potential scaffold for tissue regeneration.  more » « less
Award ID(s):
1735971
NSF-PAR ID:
10107837
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Biomaterials
Volume:
2019
ISSN:
1687-8787
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Cellulose nanocrystal (CNCs)‐reinforced poly(lactic acid) (PLA) nanocomposites were prepared using twin screw extrusion followed by injection molding. Masterbatch approach was used to achieve more efficient dispersion of CNCs in PLA matrix. Modified CNCs (b‐CNCs) were prepared using benzoic acid as a nontoxic material through a green esterification method in a solvent‐free technique. Transmission electron microscopy images did not exhibit significant differences in the structure of b‐CNCs as compared with unmodified CNCs. However, a reduction of 6.6–15.5% in the aspect ratio of b‐CNCs was observed. The fracture surface of PLA‐b‐CNCs nanocomposites exhibited rough and irregular pattern which confirmed the need of more energy for fracture. Pristine CNCs showed a decrease in the thermal stability of nanocomposites, however, b‐CNCs nanocomposites exhibited higher thermal stability than pure PLA. The average storage modulus was improved by 38 and 48% by addition of CNCs and b‐CNCs in PLA, respectively. The incorporation of b‐CNCs increased Young's modulus, ultimate tensile stress, elongation at break, and impact strength by 27.02, 10.90, 4.20, and 32.77%, respectively, however, CNCs nanocomposites exhibited a slight decrease in ultimate strength and elongation at break. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2018,135, 46468.

     
    more » « less
  2. Fibers are valuable to biomedical applications. Used as sutures or meshes, there is an increased dual need to provide functionality such as drug delivery. Porosity represents a high surface area to volume architecture. Coaxial fibers with porous and non-porous layers offer a new design framework for fiber design that can resolve dual needs of mechanical robustness with transport phenomena. Using preferential solubility of a polymer in supercritical CO2, we develop a new architecture using biocompatible polymers based on porous core-sheath fiber fabrication technique. Polycaprolactone was selected as the CO2 miscible phase and Poly(butyrate adipate terephthalate)(PBAT) as the immiscible phase. The mechanical performance of the fibers was investigated using quasi static and dynamic loading. SEM images indicate no physical detachment of the two polymer surface after CO2 exposure indicating a successful amalgamation of polymers at the boundary of core and sheath. PCL as a sheath and as a core showed an increase of 650% and 468% in tensile strength compared to pristine PCL and PBAT. Introduction of porosity on the surface of coaxial fiber fPCL(cPBAT) further enhanced the yield strength increases by 40%. Dynamic mechanical analysis was used to analyze the viscoelastic properties of the fibers. The storage and loss modulus for coaxial fibers shows superior modulus throughout the glassy, glass transition and rubbery region as compared to the pristine PCL and PBAT, showing enhancement in both the elastic and viscous response of the material. The results indicate a new approach that is free of volatile organic solvents to manipulate the architecture of the cross-section of the electrospun fiber and tailor mechanical properties to the required application. 
    more » « less
  3. Abstract

    Managing water resources has become one of the most pressing concerns of scientists in both academia and industry. Broadening access to nontraditional water feedstocks, such as brackish water, seawater and wastewater, requires a robust pretreatment process to prolong the lifetime and improve the efficiency of reverse osmosis treatment processes. Herein, pretreatment membranes with tunable hydrophilic characteristics and mechanical properties were developed through a facile and scalable technique. Specifically, poly(vinyl alcohol) (PVA) and poly(vinyl chloride) (PVC) were electrospun at various PVA‐to‐PVC mass ratios and then crosslinked with a poly(ethylene glycol) diacid. Fiber diameters and morphologies were characterized using scanning electron microscopy (SEM); Fourier transform infrared spectroscopy and confocal fluorescence microscopy further confirmed the presence of both polymers. Moreover, a rigorous analysis to map the PVA/PVC concentration was established to accurately determine the relative concentrations of the two polymers on the co‐spun mat. The crosslinking reaction noted above tuned the membrane porosity from 500 to 80 nm, as seen using SEM, and the mechanical properties were probed using tensile testing. The data revealed that the PVC content controlled the mechanical strength; moreover, higher PVA contents were expected to increase water permeation by enhancing the hydrophilicity, but the higher degree of crosslinking in these materials actually reduced water permeation. This work introduces a facile, scalable route for the manufacture of pretreatment membranes with tunable porosity, mechanical properties and water permeation behavior. © 2021 Society of Industrial Chemistry.

     
    more » « less
  4. The objective of this research was to create and appraise biodegradable polymer-based nanofibers containing distinct concentrations of calcium trimetaphosphate (Ca-TMP) for periodontal tissue engineering. Poly(ester urea) (PEU) (5% w/v) solutions containing Ca-TMP (15%, 30%, 45% w/w) were electrospun into fibrous scaffolds. The fibers were evaluated using SEM, EDS, TGA, FTIR, XRD, and mechanical tests. Degradation rate, swelling ratio, and calcium release were also evaluated. Cell/Ca-TMP and cell/scaffold interaction were assessed using stem cells from human exfoliated deciduous teeth (SHEDs) for cell viability, adhesion, and alkaline phosphatase (ALP) activity. Analysis of variance (ANOVA) and post-hoc tests were used (α = 0.05). The PEU and PEU/Ca-TMP-based membranes presented fiber diameters at 469 nm and 414–672 nm, respectively. Chemical characterization attested to the Ca-TMP incorporation into the fibers. Adding Ca-TMP led to higher degradation stability and lower dimensional variation than the pure PEU fibers; however, similar mechanical characteristics were observed. Minimal calcium was released after 21 days of incubation in a lipase-enriched solution. Ca-TMP extracts enhanced cell viability and ALP activity, although no differences were found between the scaffold groups. Overall, Ca-TMP was effectively incorporated into the PEU fibers without compromising the morphological properties but did not promote significant cell function. 
    more » « less
  5. Background

    Chronic rhinosinusitis (CRS) is a chronic inflammatory disease characterized by persistent inflammation and bacterial infection. Ciprofloxacin and azithromycin are commonly prescribed antibiotics for CRS, but the ability to provide targeted release in the sinuses could mitigate side effects and improve drug concentrations at the infected site. This study was aimed to evaluate the efficacy of the novel ciprofloxacin‐azithromycin sinus stent (CASS) in vitro.

    Methods

    The CASS was created by coating ciprofloxacin (hydrophilic, inner layer) and azithromycin (hydrophobic, outer layer) onto a biodegradable poly‐l‐lactic acid (PLLA) stent. In‐vitro evaluation included: (1) assessment of drug‐coating stability within the stent using scanning electron microscopy (SEM); (2) determination of ciprofloxacin and azithromycin release kinetics; and (3) assessment of anti‐biofilm activities againstPseudomonas aeruginosa.

    Results

    The ciprofloxacin nanoparticle suspension in the inner layer was confirmed by zeta potential. Both ciprofloxacin (60 µg) and azithromycin (3 mg) were uniformly coated on the surface of the PLLA stents. The CASS showed ciprofloxacin/azithromycin sustained release patterns, with 80.55 ± 11.61% of ciprofloxacin and 93.85 ± 6.9% of azithromycin released by 28 days. The CASS also significantly reducedP aeruginosabiofilm mass compared with bare stents and controls (relative optical density units at 590‐nm optical density: CASS, 0.037 ± 0.006; bare stent, 0.911 ± 0.015; control, 1.000 ± 0.000;p< 0.001; n = 3).

    Conclusion

    The CASS maintains a uniform coating and sustained delivery of ciprofloxacin and azithromycin, providing anti‐biofilm activities againstP aeruginosa. Further studies evaluating the efficacy of CASS in a preclinical model are planned.

     
    more » « less