Abstract Website Fingerprinting (WF) attacks are used by local passive attackers to determine the destination of encrypted internet traffic by comparing the sequences of packets sent to and received by the user to a previously recorded data set. As a result, WF attacks are of particular concern to privacy-enhancing technologies such as Tor. In response, a variety of WF defenses have been developed, though they tend to incur high bandwidth and latency overhead or require additional infrastructure, thus making them difficult to implement in practice. Some lighter-weight defenses have been presented as well; still, they attain only moderate effectiveness against recently published WF attacks. In this paper, we aim to present a realistic and novel defense, RegulaTor, which takes advantage of common patterns in web browsing traffic to reduce both defense overhead and the accuracy of current WF attacks. In the closed-world setting, RegulaTor reduces the accuracy of the state-of-the-art attack, Tik-Tok, against comparable defenses from 66% to 25.4%. To achieve this performance, it requires 6.6% latency overhead and a bandwidth overhead 39.3% less than the leading moderate-overhead defense. In the open-world setting, RegulaTor limits a precision-tuned Tik-Tok attack to an F 1 -score of. 135, compared to .625 for the best comparable defense.
more »
« less
Adversarial Traces for Website Fingerprinting Defense
Website Fingerprinting (WF) is a traffic analysis attack that enables an eavesdropper to infer the victim's web activity even when encrypted and even when using the Tor anonymity system. Using deep learning classifiers, the attack can reach up to 98% accuracy. Existing WF defenses are either too expensive in terms of bandwidth and latency overheads (e.g. 2-3 times as large or slow) or ineffective against the latest attacks. In this work, we explore a novel defense based on the idea of adversarial examples that have been shown to undermine machine learning classifiers in other domains. Our Adversarial Traces defense adds padding to a Tor traffic trace in a manner that reliably fools the classifier into classifying it as coming from a different site. The technique drops the accuracy of the state-of-the-art attack from 98% to 60%, while incurring a reasonable 47% bandwidth overhead, showing its promise as a possible defense for Tor.
more »
« less
- Award ID(s):
- 1816851
- PAR ID:
- 10108382
- Date Published:
- Journal Name:
- Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security
- Page Range / eLocation ID:
- 2225 to 2227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Website Fingerprinting (WF) attacks pose a serious threat to users' online privacy, including for users of the Tor anonymity system. By exploiting recent advances in deep learning, WF attacks like Deep Fingerprinting (DF) have reached up to 98% accuracy. The DF attack, however, requires large amounts of training data that needs to be updated regularly, making it less practical for the weaker attacker model typically assumed in WF. Moreover, research on WF attacks has been criticized for not demonstrating attack effectiveness under more realistic and more challenging scenarios. Most research on WF attacks assumes that the testing and training data have similar distributions and are collected from the same type of network at about the same time. In this paper, we examine how an attacker could leverage N-shot learning---a machine learning technique requiring just a few training samples to identify a given class---to reduce the effort of gathering and training with a large WF dataset as well as mitigate the adverse effects of dealing with different network conditions. In particular, we propose a new WF attack called Triplet Fingerprinting (TF) that uses triplet networks for N-shot learning. We evaluate this attack in challenging settings such as where the training and testing data are collected multiple years apart on different networks, and we find that the TF attack remains effective in such settings with 85% accuracy or better. We also show that the TF attack is also effective in the open world and outperforms traditional transfer learning. On top of that, the attack requires only five examples to recognize a website, making it dangerous in a wide variety of scenarios where gathering and training on a complete dataset would be impractical.more » « less
-
null (Ed.)Abstract A passive local eavesdropper can leverage Website Fingerprinting (WF) to deanonymize the web browsing activity of Tor users. The value of timing information to WF has often been discounted in recent works due to the volatility of low-level timing information. In this paper, we more carefully examine the extent to which packet timing can be used to facilitate WF attacks. We first propose a new set of timing-related features based on burst-level characteristics to further identify more ways that timing patterns could be used by classifiers to identify sites. Then we evaluate the effectiveness of both raw timing and directional timing which is a combination of raw timing and direction in a deep-learning-based WF attack. Our closed-world evaluation shows that directional timing performs best in most of the settings we explored, achieving: (i) 98.4% in undefended Tor traffic; (ii) 93.5% on WTF-PAD traffic, several points higher than when only directional information is used; and (iii) 64.7% against onion sites, 12% higher than using only direction. Further evaluations in the open-world setting show small increases in both precision (+2%) and recall (+6%) with directional-timing on WTF-PAD traffic. To further investigate the value of timing information, we perform an information leakage analysis on our proposed handcrafted features. Our results show that while timing features leak less information than directional features, the information contained in each feature is mutually exclusive to one another and can thus improve the robustness of a classifier.more » « less
-
Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.more » « less
-
null (Ed.)Abstract We introduce Generative Adversarial Networks for Data-Limited Fingerprinting (GANDaLF), a new deep-learning-based technique to perform Website Fingerprinting (WF) on Tor traffic. In contrast to most earlier work on deep-learning for WF, GANDaLF is intended to work with few training samples, and achieves this goal through the use of a Generative Adversarial Network to generate a large set of “fake” data that helps to train a deep neural network in distinguishing between classes of actual training data. We evaluate GANDaLF in low-data scenarios including as few as 10 training instances per site, and in multiple settings, including fingerprinting of website index pages and fingerprinting of non-index pages within a site. GANDaLF achieves closed-world accuracy of 87% with just 20 instances per site (and 100 sites) in standard WF settings. In particular, GANDaLF can outperform Var-CNN and Triplet Fingerprinting (TF) across all settings in subpage fingerprinting. For example, GANDaLF outperforms TF by a 29% margin and Var-CNN by 38% for training sets using 20 instances per site.more » « less