Over 8 million users rely on the Tor network each day to protect their anonymity online. Unfortunately, Tor has been shown to be vulnerable to the website fingerprinting attack, which allows an attacker to deduce the website a user is visiting based on patterns in their traffic. The state-of-the-art attacks leverage deep learning to achieve high classification accuracy using raw packet information. Work thus far, however, has examined only one type of media delivered over the Tor network: web pages, and mostly just home pages of sites. In this work, we instead investigate the fingerprintability of video content served over Tor. We collected a large new dataset of network traces for 50 YouTube videos of similar length. Our preliminary experiments utilizing a convolutional neural network model proposed in prior works has yielded promising classification results, achieving up to 55% accuracy. This shows the potential to unmask the individual videos that users are viewing over Tor, creating further privacy challenges to consider when defending against website fingerprinting attacks.
more »
« less
UNDERSTANDING FEATURE DISCOVERY IN WEBSITE FINGERPRINTING ATTACKS
The Tor anonymity system is vulnerable to website fingerprinting attacks that can reveal users Internet browsing behavior. The state-of-the-art website fingerprinting attacks use convolutional neural networks to automatically extract features from packet traces. One such attack undermines an efficient fingerprinting defense previously considered a candidate for implementation in Tor. In this work, we study the use of neural network attribution techniques to visualize activity in the attack's model. These visualizations, essentially heatmaps of the network, can be used to identify regions of particular sensitivity and provide insight into the features that the model has learned. We then examine how these heatmaps may be used to create a new website fingerprinting defense that applies random padding to the website trace with an emphasis towards highly fingerprintable regions. This defense reduces the attacker's accuracy from 98% to below 70% with a packet overhead of approximately 80%.
more »
« less
- Award ID(s):
- 1816851
- PAR ID:
- 10108383
- Date Published:
- Journal Name:
- Proceedings of the 2018 IEEE Western New York Image and Signal Processing Workshop
- Page Range / eLocation ID:
- 1 to 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Recent advances in Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art machine learning techniques across a wide range of application, as well as automating the feature engineering process. In this paper, we broadly study the applicability of deep learning to website fingerprinting. First, we show that unsupervised DNNs can generate lowdimensional informative features that improve the performance of state-of-the-art website fingerprinting attacks. Second, when used as classifiers, we show that they can exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we investigate which site-level features of a website influence its fingerprintability by DNNs.more » « less
-
Website fingerprinting attacks, which use statistical analysis on network traffic to compromise user privacy, have been shown to be effective even if the traffic is sent over anonymity-preserving networks such as Tor. The classical attack model used to evaluate website fingerprinting attacks assumes an on-path adversary, who can observe all traffic traveling between the user’s computer and the secure network. In this work we investigate these attacks under a different attack model, in which the adversary is capable of sending a small amount of malicious JavaScript code to the target user’s computer. The malicious code mounts a cache side-channel attack, which exploits the effects of contention on the CPU’s cache, to identify other websites being browsed. The effectiveness of this attack scenario has never been systematically analyzed, especially in the open-world model which assumes that the user is visiting a mix of both sensitive and non-sensitive sites. We show that cache website fingerprinting attacks in JavaScript are highly feasible. Specifically, we use machine learning techniques to classify traces of cache activity. Unlike prior works, which try to identify cache conflicts, our work measures the overall occupancy of the last-level cache. We show that our approach achieves high classification accuracy in both the open-world and the closed-world models. We further show that our attack is more resistant than network-based fingerprinting to the effects of response caching, and that our techniques are resilient both to network-based defenses and to side-channel countermeasures introduced to modern browsers as a response to the Spectre attack. To protect against cache-based website fingerprinting, new defense mechanisms must be introduced to privacy-sensitive browsers and websites. We investigate one such mechanism, and show that generating artificial cache activity reduces the effectiveness of the attack and completely eliminates it when used in the Tor Browsermore » « less
-
Tor provides low-latency anonymous and uncensored network access against a local or network adversary. Due to the design choice to minimize traffic overhead (and increase the pool of potential users) Tor allows some information about the client's connections to leak. Attacks using (features extracted from) this information to infer the website a user visits are called Website Fingerprinting (WF) attacks. We develop a methodology and tools to measure the amount of leaked information about a website. We apply this tool to a comprehensive set of features extracted from a large set of websites and WF defense mechanisms, allowing us to make more fine-grained observations about WF attacks and defenses.more » « less
-
Recent website fingerprinting attacks have been shown to achieve very high performance against traffic through Tor. These attacks allow an adversary to deduce the website a Tor user has visited by simply eavesdropping on the encrypted communication. This has consequently motivated the development of many defense strategies that obfuscate traffic through the addition of dummy packets and/or delays. The efficacy and practicality of many of these recent proposals have yet to be scrutinized in detail. In this study, we re-evaluate nine recent defense proposals that claim to provide adequate security with low-overheads using the latest Deep Learning-based attacks. Furthermore, we assess the feasibility of implementing these defenses within the current confines of Tor. To this end, we additionally provide the first on-network implementation of the DynaFlow defense to better assess its real-world utility.more » « less
An official website of the United States government

