skip to main content


Title: COMET: Commonsense Transformers for Knowledge Graph Construction
We present the first comprehensive study on automatic knowledge base construction for two prevalent commonsense knowledge graphs: ATOMIC (Sap et al., 2019) and ConceptNet (Speer et al., 2017). Contrary to many conventional KBs that store knowledge with canonical templates, commonsense KBs only store loosely structured open-text descriptions of knowledge. We posit that an important step toward automatic commonsense completion is the development of generative models of commonsense knowledge, and propose COMmonsEnse Transformers (COMET) that learn to generate rich and diverse commonsense descriptions in natural language. Despite the challenges of commonsense modeling, our investigation reveals promising results when implicit knowledge from deep pre-trained language models is transferred to generate explicit knowledge in commonsense knowledge graphs. Empirical results demonstrate that COMET is able to generate novel knowledge that humans rate as high quality, with up to 77.5% (ATOMIC) and 91.7% (ConceptNet) precision at top 1, which approaches human performance for these resources. Our findings suggest that using generative commonsense models for automatic commonsense KB completion could soon be a plausible alternative to extractive methods.  more » « less
Award ID(s):
1714566
NSF-PAR ID:
10107989
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Association for Computational Linguistics (ACL)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations. 
    more » « less
  2. Language understanding involves processing text with both the grammatical and 2 common-sense contexts of the text fragments. The text “I went to the grocery store 3 and brought home a car” requires both the grammatical context (syntactic) and 4 common-sense context (semantic) to capture the oddity in the sentence. Contex5 tualized text representations learned by Language Models (LMs) are expected to 6 capture a variety of syntactic and semantic contexts from large amounts of training 7 data corpora. Recent work such as ERNIE has shown that infusing the knowl8 edge contexts, where they are available in LMs, results in significant performance 9 gains on General Language Understanding (GLUE) benchmark tasks. However, 10 to our knowledge, no knowledge-aware model has attempted to infuse knowledge 11 through top-down semantics-driven syntactic processing (Eg: Common-sense to 12 Grammatical) and directly operated on the attention mechanism that LMs leverage 13 to learn the data context. We propose a learning framework Top-Down Language 14 Representation (TDLR) to infuse common-sense semantics into LMs. In our 15 implementation, we build on BERT for its rich syntactic knowledge and use the 16 knowledge graphs ConceptNet and WordNet to infuse semantic knowledge. 
    more » « less
  3. Understanding narratives requires reasoning about implicit world knowledge related to the causes, effects, and states of situations described in text. At the core of this challenge is how to access contextually relevant knowledge on demand and reason over it. In this paper, we present initial studies toward zero-shot commonsense question answering by formulating the task as inference over dynamically generated commonsense knowledge graphs. In contrast to previous studies for knowledge integration that rely on retrieval of existing knowledge from static knowledge graphs, our study requires commonsense knowledge integration where contextually relevant knowledge is often not present in existing knowledge bases. Therefore, we present a novel approach that generates contextually-relevant symbolic knowledge structures on demand using generative neural commonsense knowledge models. Empirical results on two datasets demonstrate the efficacy of our neuro-symbolic approach for dynamically constructing knowledge graphs for reasoning. Our approach achieves significant performance boosts over pretrained language models and vanilla knowledge models, all while providing interpretable reasoning paths for its predictions. 
    more » « less
  4. We present ATOMIC, an atlas of everyday commonsense reasoning, organized through 877k textual descriptions of inferential knowledge. Compared to existing resources that center around taxonomic knowledge, ATOMIC focuses on inferential knowledge organized as typed if-then relations with variables (e.g., "if X pays Y a compliment, then Y will likely return the compliment"). We propose nine if-then relation types to distinguish causes vs. effects, agents vs. themes, voluntary vs. involuntary events, and actions vs. mental states. By generatively training on the rich inferential knowledge described in ATOMIC, we show that neural models can acquire simple commonsense capabilities and reason about previously unseen events. Experimental results demonstrate that multitask models that incorporate the hierarchical structure of if-then relation types lead to more accurate inference compared to models trained in isolation, as measured by both automatic and human evaluation. 
    more » « less
  5. The commonsense natural language inference (CNLI) tasks aim to select the most likely follow-up statement to a contextual description of ordinary, everyday events and facts. Current approaches to transfer learning of CNLI models across tasks require many labeled data from the new task. This paper presents a way to reduce this need for additional annotated training data from the new task by leveraging symbolic knowledge bases, such as ConceptNet. We formulate a teacher-student framework for mixed symbolic-neural reasoning, with the large-scale symbolic knowledge base serving as the teacher and a trained CNLI model as the student. This hybrid distillation process involves two steps. The first step is a symbolic reasoning process. Given a collection of unlabeled data, we use an abductive reasoning framework based on Grenander's pattern theory to create weakly labeled data. Pattern theory is an energy-based graphical probabilistic framework for reasoning among random variables with varying dependency structures. In the second step, the weakly labeled data, along with a fraction of the labeled data, is used to transfer-learn the CNLI model into the new task. The goal is to reduce the fraction of labeled data required. We demonstrate the efficacy of our approach by using three publicly available datasets (OpenBookQA, SWAG, and HellaSWAG) and evaluating three CNLI models (BERT, LSTM, and ESIM) that represent different tasks. We show that, on average, we achieve 63% of the top performance of a fully supervised BERT model with no labeled data. With only 1000 labeled samples, we can improve this performance to 72%. Interestingly, without training, the teacher mechanism itself has significant inference power. The pattern theory framework achieves 32.7% accuracy on OpenBookQA, outperforming transformer-based models such as GPT (26.6%), GPT-2 (30.2%), and BERT (27.1%) by a significant margin. We demonstrate that the framework can be generalized to successfully train neural CNLI models using knowledge distillation under unsupervised and semi-supervised learning settings. Our results show that it outperforms all unsupervised and weakly supervised baselines and some early supervised approaches, while offering competitive performance with fully supervised baselines. Additionally, we show that the abductive learning framework can be adapted for other downstream tasks, such as unsupervised semantic textual similarity, unsupervised sentiment classification, and zero-shot text classification, without significant modification to the framework. Finally, user studies show that the generated interpretations enhance its explainability by providing key insights into its reasoning mechanism. 
    more » « less