skip to main content


Title: Scalable optimal Bayesian classification of single-cell trajectories under regulatory model uncertainty
Background: Single-cell gene expression measurements offer opportunities in deriving mechanistic understanding of complex diseases, including cancer. However, due to the complex regulatory machinery of the cell, gene regulatory network (GRN) model inference based on such data still manifests significant uncertainty. Results:The goal of this paper is to develop optimal classification of single-cell trajectories accounting for potential model uncertainty. Partially-observed Boolean dynamical systems (POBDS) are used for modeling gene regulatory networks observed through noisy gene-expression data. We derive the exact optimal Bayesian classifier (OBC) for binary classification of single-cell trajectories. The application of the OBC becomes impractical for large GRNs, due to computational and memory requirements. To address this, we introduce a particle-based single-cell classification method that is highly scalable for large GRNs with much lower complexity than the optimal solution. Conclusion:The performance of the proposed particle-based method is demonstrated through numerical experiments using a POBDS model of the well-known T-cell large granular lymphocyte (T-LGL) leukemia network with noisy time-series gene-expression  more » « less
Award ID(s):
1718924
NSF-PAR ID:
10108039
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
BMC genomics
Volume:
20
Issue:
S6
ISSN:
1471-2164
Page Range / eLocation ID:
435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most of the existing methodologies for control of Gene Regulatory Networks (GRNs) assume that the immediate cost function at each state and time point is fully known. In this paper, we introduce an optimal control strategy for control of GRNs with unknown or partially-known immediate cost function. Toward this, we adopt a partially-observed Boolean dynamical system (POBDS) model for the GRN and propose an Inverse Reinforcement Learning (IRL) methodology for quantifying the imperfect behavior of experts, obtained via prior biological knowledge or experimental data. The constructed cost function then is used in finding the optimal infinite-horizon control strategy for the POBDS. The application of the proposed method using a single sequence of experimental data is investigated through numerical experiments using a melanoma gene regulatory network. 
    more » « less
  2. Control of gene regulatory networks (GRNs) to shift gene expression from undesirable states to desirable ones has received much attention in recent years. Most of the existing methods assume that the cost of intervention at each state and time point, referred to as the immediate cost function, is fully known. In this paper, we employ the Partially-Observed Boolean Dynamical System (POBDS) signal model for a time sequence of noisy expression measurement from a Boolean GRN and develop a Bayesian Inverse Reinforcement Learning (BIRL) approach to address the realistic case in which the only available knowledge regarding the immediate cost function is provided by the sequence of measurements and interventions recorded in an experimental setting by an expert. The Boolean Kalman Smoother (BKS) algorithm is used for optimally mapping the available gene-expression data into a sequence of Boolean states, and then the BIRL method is efficiently combined with the Q-learning algorithm for quantification of the immediate cost function. The performance of the proposed methodology is investigated by applying a state-feedback controller to two GRN models: a melanoma WNT5A Boolean network and a p53-MDM2 negative feedback loop Boolean network, when the cost of the undesirable states, and thus the identity of the undesirable genes, is learned using the proposed methodology. 
    more » « less
  3. We propose a novel methodology for fault detection and diagnosis in partially-observed Boolean dynamical systems (POBDS). These are stochastic, highly nonlinear, and derivative- less systems, rendering difficult the application of classical fault detection and diagnosis methods. The methodology comprises two main approaches. The first addresses the case when the normal mode of operation is known but not the fault modes. It applies an innovations filter (IF) to detect deviations from the nominal normal mode of operation. The second approach is applicable when the set of possible fault models is finite and known, in which case we employ a multiple model adaptive estimation (MMAE) approach based on a likelihood-ratio (LR) statistic. Unknown system parameters are estimated by an adaptive expectation- maximization (EM) algorithm. Particle filtering techniques are used to reduce the computational complexity in the case of systems with large state-spaces. The efficacy of the proposed methodology is demonstrated by numerical experiments with a large gene regulatory network (GRN) with stuck-at faults observed through a single noisy time series of RNA-seq gene expression measurements. 
    more » « less
  4. null (Ed.)
    We present PALLAS, a practical method for gene regulatory network (GRN) inference from time series data, which employs penalized maximum likelihood and particle swarms for optimization. PALLAS is based on the Partially-Observable Boolean Dynamical System (POBDS) model and thus does not require ad-hoc binarization of the data. The penalty in the likelihood is a LASSO regularization term, which encourages the resulting network to be sparse. PALLAS is able to scale to networks of realistic size under no prior knowledge, by virtue of a novel continuous-discrete Fish School Search particle swarm algorithm for efficient simultaneous maximization of the penalized likelihood over the discrete space of networks and the continuous space of observational parameters. The performance of PALLAS is demonstrated by a comprehensive set of experiments using synthetic data generated from real and artificial networks, as well as real time series microarray and RNA-seq data, where it is compared to several other well-known methods for gene regulatory network inference. The results show that PALLAS can infer GRNs more accurately than other methods, while being capable of working directly on gene expression data, without need of ad-hoc binarization. PALLAS is a fully-fledged program, written in python, and available on GitHub (https://github.com/yukuntan92/PALLAS). 
    more » « less
  5. Abstract

    Inferring gene regulatory networks (GRNs) from single-cell data is challenging due to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we present Probabilistic Matrix Factorization for Gene Regulatory Network Inference (PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing transcription factor activity and regulatory relationships. Using variational inference allows hyperparameter search for principled model selection and direct comparison to other generative models. We extensively test and benchmark our method using real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more accurately than current state-of-the-art single-cell GRN inference methods, offering well-calibrated uncertainty estimates.

     
    more » « less