skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subgrid variations of the cloud water and droplet number concentration over the tropical ocean: satellite observations and implications for warm rain simulations in climate models
Abstract. One of the challenges inrepresenting warm rain processes in global climate models (GCMs) is relatedto the representation of the subgrid variability of cloud properties, such ascloud water and cloud droplet number concentration (CDNC), and the effectthereof on individual precipitation processes such as autoconversion. Thiseffect is conventionally treated by multiplying the resolved-scale warm rainprocess rates by an enhancement factor (Eq) which is derived fromintegrating over an assumed subgrid cloud water distribution. The assumedsubgrid cloud distribution remains highly uncertain. In this study, we derivethe subgrid variations of liquid-phase cloud properties over the tropicalocean using the satellite remote sensing products from Moderate ResolutionImaging Spectroradiometer (MODIS) and investigate the correspondingenhancement factors for the GCM parameterization of autoconversion rate. Wefind that the conventional approach of using only subgrid variability ofcloud water is insufficient and that the subgrid variability of CDNC, as wellas the correlation between the two, is also important for correctlysimulating the autoconversion process in GCMs. Using the MODIS data whichhave near-global data coverage, we find that Eq shows a strongdependence on cloud regimes due to the fact that the subgrid variability ofcloud water and CDNC is regime dependent. Our analysis shows a significantincrease of Eq from the stratocumulus (Sc) to cumulus (Cu) regions.Furthermore, the enhancement factor EN due to the subgrid variation ofCDNC is derived from satellite observation for the first time, and resultsreveal several regions downwind of biomass burning aerosols (e.g., Gulf ofGuinea, east coast of South Africa), air pollution (i.e., East China Sea),and active volcanos (e.g., Kilauea, Hawaii, and Ambae, Vanuatu), where theEN is comparable to or even larger than Eq, suggesting an importantrole of aerosol in influencing the EN. MODIS observations suggest thatthe subgrid variations of cloud liquid water path (LWP) and CDNC aregenerally positively correlated. As a result, the combined enhancementfactor, including the effect of LWP and CDNC correlation, is significantlysmaller than the simple product of EqEN. Given the importanceof warm rain processes in understanding the Earth's system dynamics and watercycle, we conclude that more observational studies are needed to provide abetter constraint on the warm rain processes in GCMs.  more » « less
Award ID(s):
1726023 1730250
PAR ID:
10108126
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Chemistry and Physics
Volume:
19
Issue:
2
ISSN:
1680-7324
Page Range / eLocation ID:
1077 to 1096
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. In the current global climate models (GCMs), the nonlinearity effect ofsubgrid cloud variations on the parameterization of warm-rain process, e.g.,the autoconversion rate, is often treated by multiplying the resolved-scalewarm-rain process rates by a so-called enhancement factor (EF). In thisstudy, we investigate the subgrid-scale horizontal variations andcovariation of cloud water content (qc) and cloud droplet numberconcentration (Nc) in marine boundary layer (MBL) clouds based on thein situ measurements from a recent field campaign and study the implicationsfor the autoconversion rate EF in GCMs. Based on a few carefully selectedcases from the field campaign, we found that in contrast to the enhancingeffect of qc and Nc variations that tends to make EF > 1, the strong positive correlation between qc and Nc results in asuppressing effect that tends to make EF < 1. This effect isespecially strong at cloud top, where the qc and Nc correlation canbe as high as 0.95. We also found that the physically complete EF thataccounts for the covariation of qc and Nc is significantly smallerthan its counterpart that accounts only for the subgrid variation ofqc, especially at cloud top. Although this study is based on limitedcases, it suggests that the subgrid variations of Nc and itscorrelation with qc both need to be considered for an accuratesimulation of the autoconversion process in GCMs. 
    more » « less
  2. null (Ed.)
    Abstract. A great challenge in climate modeling is how to parameterizesubgrid cloud processes, such as autoconversion and accretion in warm-rainformation. In this study, we use ground-based observations and retrievalsover the Azores to investigate the so-called enhancement factors,Eauto and Eaccr, which are often used in climate modelsto account for the influence of subgrid variance of cloud and precipitationwater on the autoconversion and accretion processes. Eauto andEaccr are computed for different equivalent model grid sizes. Thecalculated Eauto values increase from 1.96 (30 km) to 3.2(180 km), and the calculated Eaccr values increase from 1.53(30 km) to 1.76 (180 km). Comparing the prescribed enhancement factors inMorrison and Gettleman (2008, MG08) to the observed ones, we found that ahigher Eauto (3.2) at small grids and lower Eaccr (1.07)are used in MG08, which might explain why most of the general circulation models (GCMs) producetoo-frequent precipitation events but with too-light precipitation intensity. Theratios of the rain to cloud water mixing ratio (qr/qc) at Eaccr=1.07 andEaccr=2.0 are 0.063 and 0.142, respectively, from observations,further suggesting that the prescribed value of Eaccr=1.07 used inMG08 is too small to simulate precipitation intensity correctly. BothEauto and Eaccr increase when the boundary layer becomesless stable, and the values are larger in precipitating clouds (CLWP>75 gm−2) than those in non-precipitating clouds (CLWP<75 gm−2). Therefore, the selection of Eauto andEaccr values in GCMs should be regime- and resolution-dependent. 
    more » « less
  3. Abstract. We present the development and assessment of a new flight system that uses acommercially available continuous-wave, tunable infrared laser directabsorption spectrometer to measure N2O, CO2, CO, andH2O. When the commercial system is operated in an off-the-shelfmanner, we find a clear cabin pressure–altitude dependency forN2O, CO2, and CO. The characteristics of this artifactmake it difficult to reconcile with conventional calibration methods. Wepresent a novel procedure that extends upon traditional calibrationapproaches in a high-flow system with high-frequency, short-duration samplingof a known calibration gas of near-ambient concentration. This approachcorrects for cabin pressure dependency as well as other sources of drift inthe analyzer while maintaining a ∼90% duty cycle for 1Hz sampling.Assessment and validation of the flight system with both extensive in-flightcalibrations and comparisons with other flight-proven sensors demonstrate thevalidity of this method. In-flight 1σ precision is estimated at0.05ppb, 0.10ppm, 1.00ppb, and 10ppm for N2O,CO2, CO, and H2O respectively, and traceability to WorldMeteorological Organization (WMO) standards (1σ) is 0.28ppb,0.33ppm, and 1.92ppb for N2O, CO2, and CO. We showthe system is capable of precise, accurate 1Hz airborne observations ofN2O, CO2, CO, and H2O and highlight flightdata, illustrating the value of this analyzer for studying N2Oemissions on ∼100km spatial scales. 
    more » « less
  4. Abstract. Urbanization and deforestation have important impacts on atmosphericparticulate matter (PM) over Amazonia. This study presents observations andanalysis of PM1 concentration, composition, and opticalproperties in central Amazonia during the dry season, focusing on theanthropogenic impacts. The primary study site was located 70&thinsp;km downwind ofManaus, a city of over 2 million people in Brazil, as part of theGoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol massspectrometer (AMS) provided data on PM1 composition, and aethalometermeasurements were used to derive the absorption coefficient babs,BrC ofbrown carbon (BrC) at 370&thinsp;nm. Non-refractory PM1 mass concentrationsaveraged 12.2&thinsp;µg&thinsp;m−3 at the primary study site, dominated byorganics (83&thinsp;%), followed by sulfate (11&thinsp;%). A decrease inbabs,BrC was observed as the mass concentration of nitrogen-containingorganic compounds decreased and the organic PM1 O:C ratio increased,suggesting atmospheric bleaching of the BrC components. The organic PM1was separated into six different classes by positive-matrix factorization(PMF), and the mass absorption efficiency Eabs associated with eachfactor was estimated through multivariate linear regression ofbabs,BrC on the factor loadings. The largest Eabs values wereassociated with urban (2.04±0.14&thinsp;m2&thinsp;g−1) and biomass-burning(0.82±0.04 to 1.50±0.07&thinsp;m2&thinsp;g−1) sources. Together, these sources contributed at least 80&thinsp;% ofbabs,BrC while accounting for 30&thinsp;% to 40&thinsp;% of the organic PM1 massconcentration. In addition, a comparison of organic PM1 compositionbetween wet and dry seasons revealed that only part of the 9-foldincrease in mass concentration between the seasons can be attributed tobiomass burning. Biomass-burning factor loadings increased by 30-fold,elevating its relative contribution to organic PM1 from about 10&thinsp;% inthe wet season to 30&thinsp;% in the dry season. However, most of the PM1mass (&gt;60&thinsp;%) in both seasons was accounted for by biogenicsecondary organic sources, which in turn showed an 8-fold seasonalincrease in factor loadings. A combination of decreased wet deposition andincreased emissions and oxidant concentrations, as well as a positivefeedback on larger mass concentrations are thought to play a role in theobserved increases. Furthermore, fuzzy c-means clustering identified threeclusters, namely “baseline”, “event”, and “urban” to representdifferent pollution influences during the dry season. The baseline cluster,representing the dry season background, was associated with a mean massconcentration of 9±3&thinsp;µg&thinsp;m−3. This concentration increasedon average by 3&thinsp;µg&thinsp;m−3 for both the urban and the event clusters.The event cluster, representing an increased influence of biomass burningand long-range transport of African volcanic emissions, was characterized byremarkably high sulfate concentrations. The urban cluster, representing theinfluence of Manaus emissions on top of the baseline, was characterized byan organic PM1 composition that differed from the other two clusters.The differences discussed suggest a shift in oxidation pathways as well asan accelerated oxidation cycle due to urban emissions, in agreement withfindings for the wet season. 
    more » « less
  5. Abstract. It has been widely observed around the world that the frequency and intensityof new particle formation (NPF) events are reduced during periods of highrelative humidity (RH). The current study focuses on how RH affects theformation of highly oxidized molecules (HOMs), which are key components ofNPF and initial growth caused by oxidized organics. The ozonolysis ofα-pinene, limonene, and Δ3-carene, with and without OHscavengers, were carried out under low NOx conditions undera range of RH (from ∼3 % to ∼92 %) in atemperature-controlled flow tube to generate secondary organic aerosol (SOA).A Scanning Mobility Particle Sizer (SMPS) was used to measure the sizedistribution of generated particles, and a novel transverse ionizationchemical ionization inlet with a high-resolution time-of-fight massspectrometer detected HOMs. A major finding from this work is that neitherthe detected HOMs nor their abundance changed significantly with RH, whichindicates that the detected HOMs must be formed from water-independentpathways. In fact, the distinguished OH- and O3-derived peroxyradicals (RO2), HOM monomers, and HOM dimers could mostly beexplained by the autoxidation of RO2 followed by bimolecularreactions with other RO2 or hydroperoxy radicals (HO2),rather than from a water-influenced pathway like through the formation of astabilized Criegee intermediate (sCI). However, as RH increased from ∼3 % to ∼92 %, the total SOA number concentrations decreased bya factor of 2–3 while SOA mass concentrations remained relatively constant. These observations show that, whilehigh RH appears to inhibit NPF as evident by the decreasing numberconcentration, this reduction is not caused by a decrease inRO2-derived HOM formation. Possible explanations for these phenomenawere discussed. 
    more » « less