skip to main content

Title: Pre-training on high-resource speech recognition improves low-resource speech-to-text translation
We present a simple approach to improve direct speech-to-text translation (ST) when the source language is low-resource: we pre-train the model on a high-resource automatic speech recognition (ASR) task, and then fine-tune its parameters for ST. We demonstrate that our approach is effective by pre-training on 300 hours of English ASR data to improve SpanishEnglish ST from 10.8 to 20.2 BLEU when only 20 hours of Spanish-English ST training data are available. Through an ablation study, we find that the pre-trained encoder (acoustic model) accounts for most of the improvement, despite the fact that the shared language in these tasks is the target language text, not the source language audio. Applying this insight, we show that pre-training on ASR helps ST even when the ASR language differs from both source and target ST languages: pre-training on French ASR also improves Spanish-English ST. Finally, we show that the approach improves performance on a true low-resource task: pre-training on a combination of English ASR and French ASR improves Mboshi-French ST, where only 4 hours of data are available, from 3.5 to 7.1 BLEU.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
NAACL 2019
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Transformer models using segment-based processing have been an effective architecture for simultaneous speech translation. However, such models create a context mismatch between training and inference environments, hindering potential translation accuracy. We solve this issue by proposing Shiftable Context, a simple yet effective scheme to ensure that consistent segment and context sizes are maintained throughout training and inference, even with the presence of partially filled segments due to the streaming nature of simultaneous translation. Shiftable Context is also broadly applicable to segment-based transformers for streaming tasks. Our experiments on the English-German, English-French, and English-Spanish language pairs from the MUST-C dataset demonstrate that when applied to the Augmented Memory Transformer, a state-of-the-art model for simultaneous speech translation, the proposed scheme achieves an average increase of 2.09, 1.83, and 1.95 BLEU scores across each wait-k value for the three language pairs, respectively, with a minimal impact on computation-aware Average Lagging. 
    more » « less
  2. Simultaneous speech-to-text translation is widely useful in many scenarios. The conventional cascaded approach uses a pipeline of streaming ASR followed by simultaneous MT, but suffers from error propagation and extra latency. To alleviate these issues, recent efforts attempt to directly translate the source speech into target text simultaneously, but this is much harder due to the combination of two separate tasks. We instead propose a new paradigm with the advantages of both cascaded and endto-end approaches. The key idea is to use two separate, but synchronized, decoders on streaming ASR and direct speech-to-text translation (ST), respectively, and the intermediate results of ASR guide the decoding policy of (but is not fed as input to) ST. During training time, we use multitask learning to jointly learn these two tasks with a shared encoder. En-toDe and En-to-Es experiments on the MuSTC dataset demonstrate that our proposed technique achieves substantially better translation quality at similar levels of latency. 
    more » « less
  3. RNN Tranducer (RNN-T) technology is very popular for building deployable models for end-to-end (E2E) automatic speech recognition (ASR) and spoken language understanding (SLU). Since these are E2E models operating on speech directly, there remains a potential to improve their performance using purely text based models like BERT, which have strong language understanding capabilities. In this paper, we propose a new training criteria for RNN-T based E2E ASR and SLU to transfer BERT’s knowledge into these systems. In the first stage of our proposed mechanism, we improve ASR performance by using a fine-grained, tokenwise knowledge transfer from BERT. In the second stage, we fine-tune the ASR model for SLU such that the above knowledge is explicitly utilized by the RNN-T model for improved performance. Our techniques improve ASR performance on the Switchboard and CallHome test sets of the NIST Hub5 2000 evaluation and on the recently released SLURP dataset on which we achieve a new state-of-the-art performance. For SLU, we show significant improvements on the SLURP slot filling task, outperforming HuBERT-base and reaching a performance close to HuBERTlarge. Compared to large transformer based speech models like HuBERT, our model is significantly more compact and uses only 300 hours of speech pretraining data. 
    more » « less
  4. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less
  5. Prominent sociolinguistic theories of language mixing have posited that single-word insertions of one language into the other are the result of a distinct process than multi-word alternations between two languages given that the former overwhelmingly surface morphosyntactically integrated into the surrounding language. To date, this distinction has not been tested in comprehension. The present study makes use of pupillometry to examine the online processing of single-word insertions and multi-word alternations by highly proficient Spanish-English bilinguals in Puerto Rico. Participants heard sentences containing target noun/adjective pairs (1) in unilingual Spanish, (2) where the Spanish noun was replaced with its English translation equivalent, followed by a Spanish post-nominal adjective, and (3) where both the noun and adjective appeared in English with the adjective occurring in the English pre-nominal position. Both types of language mixing elicit larger pupillary responses when compared to unilingual Spanish speech, though the magnitude of this difference depends on the grammatical gender of the target noun. Importantly, single-word insertions and multi-word alternations did not differ from one another. Taken together, these findings suggest that morphosyntactic integration is not the defining feature of single-word insertions, at least in comprehension, and that the comprehension system is tuned to the distributional properties of bilingual speech. 
    more » « less