skip to main content

Search for: All records

Award ID contains: 1816627

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word ("acoustic-to-word") speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, wemore »investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.« less
  2. Query-by-example (QbE) speech search is the task of matching spoken queries to utterances within a search collection. In low- or zero-resource settings, QbE search is often addressed with approaches based on dynamic time warping (DTW). Recent work has found that methods based on acoustic word embeddings (AWEs) can improve both performance and search speed. However, prior work on AWE-based QbE has primarily focused on English data and with single-word queries. In this work, we generalize AWE training to spans of words, producing acoustic span embeddings (ASE), and explore the application of ASE to QbE with arbitrary-length queries in multiple unseenmore »languages. We consider the commonly used setting where we have access to labeled data in other languages (in our case, several low-resource languages) distinct from the unseen test languages. We evaluate our approach on the QUESST 2015 QbE tasks, finding that multilingual ASE-based search is much faster than DTW-based search and outperforms the best previously published results on this task.« less
  3. Recently proposed self-supervised learning approaches have been successful for pre-training speech representation models. The utility of these learned representations has been observed empirically, but not much has been studied about the type or extent of information encoded in the pre-trained representations themselves. Developing such insights can help understand the capabilities and limits of these models and enable the research community to more efficiently develop their usage for downstream applications. In this work, we begin to fill this gap by examining one recent and successful pre-trained model (wav2vec 2.0), via its intermediate representation vectors, using a suite of analysis tools. Wemore »use the metrics of canonical correlation, mutual information, and performance on simple downstream tasks with non-parametric probes, in order to (i) query for acoustic and linguistic information content, (ii) characterize the evolution of information across model layers, and (iii) understand how fine-tuning the model for automatic speech recognition (ASR) affects these observations. Our findings motivate modifying the fine-tuning protocol for ASR, which produces improved word error rates in a low-resource setting.« less
  4. We propose a new unsupervised model for mapping a variable-duration speech segment to a fixed-dimensional representation. The resulting acoustic word embeddings can form the basis of search, discovery, and indexing systems for low- and zero-resource languages. Our model, which we refer to as a maximal sampling correspondence variational autoencoder (MCVAE), is a recurrent neural network (RNN) trained with a novel self-supervised correspondence loss that encourages consistency between embeddings of different instances of the same word. Our training scheme improves on previous correspondence training approaches through the use and comparison of multiple samples from the approximate posterior distribution. In the zero-resourcemore »setting, the MCVAE can be trained in an unsupervised way, without any ground-truth word pairs, by using the word-like segments discovered via an unsupervised term discovery system. In both this setting and a semi-supervised low-resource setting (with a limited set of ground-truth word pairs), the MCVAE outperforms previous state-of-the-art models, such as Siamese-, CAE- and VAE-based RNNs.« less
  5. Recent work has shown that speech paired with images can be used to learn semantically meaningful speech representations even without any textual supervision. In real-world low-resource settings, however, we often have access to some transcribed speech. We study whether and how visual grounding is useful in the presence of varying amounts of textual supervision. In particular, we consider the task of semantic speech retrieval in a low-resource setting. We use a previously studied data set and task, where models are trained on images with spoken captions and evaluated on human judgments of semantic relevance. We propose a multitask learning approachmore »to leverage both visual and textual modalities, with visual supervision in the form of keyword probabilities from an external tagger. We find that visual grounding is helpful even in the presence of textual supervision, and we analyze this effect over a range of sizes of transcribed data sets. With ∼5 hours of transcribed speech, we obtain 23% higher average precision when also using visual supervision.« less
  6. We present a simple approach to improve direct speech-to-text translation (ST) when the source language is low-resource: we pre-train the model on a high-resource automatic speech recognition (ASR) task, and then fine-tune its parameters for ST. We demonstrate that our approach is effective by pre-training on 300 hours of English ASR data to improve SpanishEnglish ST from 10.8 to 20.2 BLEU when only 20 hours of Spanish-English ST training data are available. Through an ablation study, we find that the pre-trained encoder (acoustic model) accounts for most of the improvement, despite the fact that the shared language in these tasksmore »is the target language text, not the source language audio. Applying this insight, we show that pre-training on ASR helps ST even when the ASR language differs from both source and target ST languages: pre-training on French ASR also improves Spanish-English ST. Finally, we show that the approach improves performance on a true low-resource task: pre-training on a combination of English ASR and French ASR improves Mboshi-French ST, where only 4 hours of data are available, from 3.5 to 7.1 BLEU.« less
  7. Direct acoustics-to-word (A2W) systems for end-to-end automatic speech recognition are simpler to train, and more efficient to decode with, than sub-word systems. However, A2W systems can have difficulties at training time when data is limited, and at decoding time when recognizing words outside the training vocabulary. To address these shortcomings, we investigate the use of recently proposed acoustic and acoustically grounded word embedding techniques in A2W systems. The idea is based on treating the final pre-softmax weight matrix of an AWE recognizer as a matrix of word embedding vectors, and using an externally trained set of word embeddings to improvemore »the quality of this matrix. In particular we introduce two ideas: (1) Enforcing similarity at training time between the external embeddings and the recognizer weights, and (2) using the word embeddings at test time for predicting out-of-vocabulary words. Our word embedding model is acoustically grounded, that is it is learned jointly with acoustic embeddings so as to encode the words’ acoustic-phonetic content; and it is parametric, so that it can embed any arbitrary (potentially out-of-vocabulary) sequence of characters. We find that both techniques improve the performance of an A2W recognizer on conversational telephone speech.« less
  8. A number of recent studies have started to investigate how speech systems can be trained on untranscribed speech by leveraging accompanying images at training time. Examples of tasks include keyword prediction and within- and acrossmode retrieval. Here we consider how such models can be used for query-by-example (QbE) search, the task of retrieving utterances relevant to a given spoken query. We are particularly interested in semantic QbE, where the task is not only to retrieve utterances containing exact instances of the query, but also utterances whose meaning is relevant to the query. We follow a segmental QbE approach where variable-durationmore »speech segments (queries, search utterances) are mapped to fixeddimensional embedding vectors. We show that a QbE system using an embedding function trained on visually grounded speech data outperforms a purely acoustic QbE system in terms of both exact and semantic retrieval performance.« less