skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Full Homogenized Macroscale Model and Pseudo-2-Dimensional Model for Lithium-Ion Battery Dynamics: Comparative Analysis, Experimental Verification and Sensitivity Analysis
Award ID(s):
1839050
PAR ID:
10108275
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
166
Issue:
8
ISSN:
0013-4651
Page Range / eLocation ID:
A1380 to A1392
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 13C‐Metabolic Flux Analysis (13C‐MFA) and Flux Balance Analysis (FBA) are widely used to investigate the operation of biochemical networks in both biological and biotechnological research. Both methods use metabolic reaction network models of metabolism operating at steady state so that reaction rates (fluxes) and the levels of metabolic intermediates are constrained to be invariant. They provide estimated (MFA) or predicted (FBA) values of the fluxes through the network in vivo, which cannot be measured directly. These fluxes can shed light on basic biology and have been successfully used to inform metabolic engineering strategies. Several approaches have been taken to test the reliability of estimates and predictions from constraint‐based methods and to compare alternative model architectures. Despite advances in other areas of the statistical evaluation of metabolic models, such as the quantification of flux estimate uncertainty, validation and model selection methods have been underappreciated and underexplored. We review the history and state‐of‐the‐art in constraint‐based metabolic model validation and model selection. Applications and limitations of the χ2‐test of goodness‐of‐fit, the most widely used quantitative validation and selection approach in 13C‐MFA, are discussed, and complementary and alternative forms of validation and selection are proposed. A combined model validation and selection framework for 13C‐MFA incorporating metabolite pool size information that leverages new developments in the field is presented and advocated for. Finally, we discuss how adopting robust validation and selection procedures can enhance confidence in constraint‐based modeling as a whole and ultimately facilitate more widespread use of FBA in biotechnology. 
    more » « less
  2. null (Ed.)
  3. Future wireless networks need to support the increasing demands for high data rates and improved coverage. One promising solution is sectorization, where an infrastructure node (e.g., a base station) is equipped with multiple sectors employing directional communication. Although the concept of sectorization is not new, it is critical to fully understand the potential of sectorized networks, such as the rate gain achieved when multiple sectors can be simultaneously activated. In this paper, we focus on sectorized wireless networks, where sectorized infrastructure nodes with beam-steering capabilities form a multi-hop mesh network for data forwarding and routing. We present a sectorized node model and characterize the capacity region of these sectorized networks. We define the flow extension ratio and the corresponding sectorization gain, which quantitatively measure the performance gain introduced by node sectorization as a function of the network flow. Our objective is to find the optimal sectorization of each node that achieves the maximum flow extension ratio, and thus the sectorization gain. Towards this goal, we formulate the corresponding optimization problem and develop an efficient distributed algorithm that obtains the node sectorization under a given network flow with an approximation ratio of 2/3. Through extensive simulations, we evaluate the sectorization gain and the performance of the proposed algorithm in various network scenarios with varying network flows. The simulation results show that the approximate sectorization gain increases sublinearly as a function of the number of sectors per node. 
    more » « less