Recently, benefiting from rapid development of energy harvesting technologies, the research trend of wireless sensor networks has shifted from the battery‐powered network to the one that can harvest energy from ambient environments. In such networks, a proper use of harvested energy poses plenty of challenges caused by numerous influence factors and complex application environments. Although numerous works have been based on the energy status of sensor nodes, no work refers to the issue of minimizing the overall data transmission cost by adjusting transmission power of nodes in energy‐harvesting wireless sensor networks. In this paper, we consider the optimization problem of deriving the energy‐neutral minimum cost paths between the source nodes and the sink node. By introducing the concept of energy‐neutral operation, we first propose a polynomial‐time optimal algorithm for finding the optimal path from a single source to the sink by adjusting the transmission powers. Based on the work earlier, another polynomial‐time algorithm is further proposed for finding the approximated optimal paths from multiple sources to the sink node. Also, we analyze the network capacity and present a near‐optimal algorithm based on the Ford–Fulkerson algorithm for approaching the maximum flow in the given network. We have validated our algorithms by various numerical results in terms of path capacity, least energy of nodes, energy ratio, and path cost. Simulation results show that the proposed algorithms achieve significant performance enhancements over existing schemes. Copyright © 2016 John Wiley & Sons, Ltd.
This content will become publicly available on October 1, 2024
- NSF-PAR ID:
- 10465972
- Date Published:
- Journal Name:
- ACM International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing (MobiHoc’23)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms.more » « less
-
Abstract In this paper, we study a machine learning enabled smart beam scheduling approach for wireless virtualization in large‐scale multiple‐input–multiple‐output (MIMO) system. Large‐scale MIMO is regarded as an emerging technology to enhance data rate of future wireless networks and the wireless virtualization is regarded as an efficient paradigm to enhance the radio frequency (RF) spectrum utilization by subleasing RF slices of wireless infrastructure providers to mobile virtual network operators (MVNOs). We leverage machine learning approach for scheduling the beams in large‐scale MIMO where RF slices with the help of subsets of antennas are subleased for MVNOs. Performance of the proposed approach is evaluated using simulation results. The results show that the proposed approach outperforms the state of the art approach.
-
We consider the ad-hoc networks consisting of n wireless nodes that are located on the plane. Any two given nodes are called neighbors if they are located within a certain distance (communication range) from one another. A given node can be directly connected to any one of its neighbors, and picks its connections according to a unique topology control algorithm that is available at every node. Given that each node knows only the indices (unique identification numbers) of its one and two-hop neighbors, we identify an algorithm that preserves connectivity and can operate without the need of any synchronization among nodes. Moreover, the algorithm results in a sparse graph with at most 5n edges and a maximum node degree of 10. Existing algorithms with the same promises further require neighbor distance and/or direction information at each node. We also evaluate the performance of our algorithm for random networks. In this case, our algorithm provides an asymptotically connected network with n(1+o(1)) edges with a degree less than or equal to 6 for 1-o(1) fraction of the nodes. We also introduce another asynchronous connectivity-preserving algorithm that can provide an upper bound as well as a lower bound on node degrees.more » « less
-
null (Ed.)Distributed stochastic gradient descent (SGD) is essential for scaling the machine learning algorithms to a large number of computing nodes. However, the infrastructures variability such as high communication delay or random node slowdown greatly impedes the performance of distributed SGD algorithm, especially in a wireless system or sensor networks. In this paper, we propose an algorithmic approach named Overlap Local-SGD (and its momentum variant) to overlap communication and computation so as to speedup the distributed training procedure. The approach can help to mitigate the straggler effects as well. We achieve this by adding an anchor model on each node. After multiple local updates, locally trained models will be pulled back towards the synchronized anchor model rather than communicating with others. Experimental results of training a deep neural network on CIFAR-10 dataset demonstrate the effectiveness of Overlap Local-SGD. We also provide a convergence guarantee for the proposed algorithm under non-convex objective functions.more » « less