A<sc>bstract</sc> Deformations of the heterotic superpotential give rise to a topological holomorphic theory with similarities to both Kodaira-Spencer gravity and holomorphic Chern-Simons theory. Although the action is cubic, it is only quadratic in the complex structure deformations (the Beltrami differential). Treated separately, for large fluxes, or alternatively at large distances in the background complex structure moduli space, these fields can be integrated out to obtain a new field theory in the remaining fields, which describe the complexified hermitian and gauge degrees of freedom. We investigate properties of this new holomorphic theory, and in particular connections to the swampland distance conjecture in the context of heterotic string theory. In the process, we define a new type of symplectic cohomology theory, where the background complex structure Beltrami differential plays the role of the symplectic form.
more »
« less
Why Surplus Structure is Not Superfluous
The idea that gauge theory has ‘surplus’ structure poses a puzzle: in one much discussed sense, this structure is redundant; but on the other hand, it is also widely held to play an essential role in the theory. In this article, we employ category-theoretic tools to illuminate an aspect of this puzzle. We precisify what is meant by surplus structure by means of functorial comparisons with equivalence classes of gauge fields, and then show that such structure is essential for any theory that represents a rich collection of physically relevant fields that are ‘local’ in nature.
more »
« less
- Award ID(s):
- 1734155
- PAR ID:
- 10108280
- Date Published:
- Journal Name:
- British journal for the philosophy of science
- ISSN:
- 0007-0882
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It has been argued that the entanglement spectrum of a static patch of de Sitter space must be flat, or what is equivalent, the temperature parameter in the Boltzmann distribution must be infinite. This seems absurd: quantum fields in de Sitter space have thermal behavior with a finite temperature proportional to the inverse radius of the horizon. The resolution of this puzzle is that the behavior of some quantum systems can be characterized by a temperature-like quantity which remains finite as the temperature goes to infinity. For want of a better term we have called this quantity tomperature. In this paper we will explain how tomperature resolves the puzzle in a proposed toy model of de Sitter holography -- the double-scaled limit of SYK theory.more » « less
-
null (Ed.)A bstract We construct a pseudo-Lagrangian that is invariant under rigid E 11 and transforms as a density under E 11 generalised diffeomorphisms. The gauge-invariance requires the use of a section condition studied in previous work on E 11 exceptional field theory and the inclusion of constrained fields that transform in an indecomposable E 11 -representation together with the E 11 coset fields. We show that, in combination with gauge-invariant and E 11 -invariant duality equations, this pseudo-Lagrangian reduces to the bosonic sector of non-linear eleven-dimensional supergravity for one choice of solution to the section condi- tion. For another choice, we reobtain the E 8 exceptional field theory and conjecture that our pseudo-Lagrangian and duality equations produce all exceptional field theories with maximal supersymmetry in any dimension. We also describe how the theory entails non-linear equations for higher dual fields, including the dual graviton in eleven dimensions. Furthermore, we speculate on the relation to the E 10 sigma model.more » « less
-
(3+1)D topological phases of matter can host a broad class of non-trivial topological defects of codimension-1, 2, and 3, of which the well-known point charges and flux loops are special cases. The complete algebraic structure of these defects defines a higher category, and can be viewed as an emergent higher symmetry. This plays a crucial role both in the classification of phases of matter and the possible fault-tolerant logical operations in topological quantum error-correcting codes. In this paper, we study several examples of such higher codimension defects from distinct perspectives. We mainly study a class of invertible codimension-2 topological defects, which we refer to as twist strings. We provide a number of general constructions for twist strings, in terms of gauging lower dimensional invertible phases, layer constructions, and condensation defects. We study some special examples in the context of \mathbb{Z}_2 ℤ 2 gauge theory with fermionic charges, in \mathbb{Z}_2 \times \mathbb{Z}_2 ℤ 2 × ℤ 2 gauge theory with bosonic charges, and also in non-Abelian discrete gauge theories based on dihedral ( D_n D n ) and alternating ( A_6 A 6 ) groups. The intersection between twist strings and Abelian flux loops sources Abelian point charges, which defines an H^4 H 4 cohomology class that characterizes part of an underlying 3-group symmetry of the topological order. The equations involving background gauge fields for the 3-group symmetry have been explicitly written down for various cases. We also study examples of twist strings interacting with non-Abelian flux loops (defining part of a non-invertible higher symmetry), examples of non-invertible codimension-2 defects, and examples of the interplay of codimension-2 defects with codimension-1 defects. We also find an example of geometric, not fully topological, twist strings in (3+1)D A_6 A 6 gauge theory.more » « less
-
Abstract A recent development in our understanding of the theory of quantum fields is the fact that familiar gauge theories in spacetime dimensions greater than two can have non-invertible symmetries generated by topological defects. The hallmark of these non-invertible symmetries is that the fusion rule deviates from the usual group-like structure, and in particular the fusion coefficients take values in topological field theories (TFTs) rather than in mere numbers. In this paper we begin an exploration of the associativity structure of non-invertible symmetries in higher dimensions. The first layer of associativity is captured by F-symbols, which we find to assume values in TFTs that have one dimension lower than that of the defect. We undertake an explicit analysis of the F-symbols for the non-invertible chiral symmetry that is preserved by the massless QED and explore their physical implications. In particular, we show the F-symbol TFTs can be detected by probing the correlators of topological defects with ’t Hooft lines. Furthermore, we derive the Ward–Takahashi identity that arises from the chiral symmetry on a large class of four-dimensional manifolds with non-trivial topologies directly from the topological data of the symmetry defects, without referring to a Lagrangian formulation of the theory.more » « less
An official website of the United States government

