skip to main content


Title: Adaptive kinetic Monte Carlo simulations of surface segregation in PdAu nanoparticles
Surface segregation in bimetallic nanoparticles (NPs) is critically important for their catalytic activity because the activity is largely determined by the surface composition. Little, however, is known about the atomic scale mechanisms and kinetics of surface segregation. One reason is that it is hard to resolve atomic rearrangements experimentally. It is also difficult to model surface segregation at the atomic scale because the atomic rearrangements can take place on time scales of seconds or minutes – much longer than can be modeled with molecular dynamics. Here we use the adaptive kinetic Monte Carlo (AKMC) method to model the segregation dynamics in PdAu NPs over experimentally relevant time scales, and reveal the origin of kinetic stability of the core@shell and random alloy NPs at the atomic level. Our focus on PdAu NPs is motivated by experimental work showing that both core@shell and random alloy PdAu NPs with diameters of less than 2 nm are stable, indicating that one of these structures must be metastable and kinetically trapped. Our simulations show that both the Au@Pd and the PdAu random alloy NPs are metastable and kinetically trapped below 400 K over time scales of hours. These AKMC simulations provide insight into the energy landscape of the two NP structures, and the diffusion mechanisms that lead to segregation. In the core–shell NP, surface segregation occurs primarily on the (100) facet through both a vacancy-mediated and a concerted mechanism. The system becomes kinetically trapped when all corner sites in the core of the NP are occupied by Pd atoms. Higher energy barriers are required for further segregation, so that the metastable NP has a partially alloyed shell. In contrast, surface segregation in the random alloy PdAu NP is suppressed because the random alloy NP has reduced strain as compared to the Au@Pd NP, and the segregation mechanisms in the alloy require more elastic energy for exchange of Pd and Au and between the surface and subsurface.  more » « less
Award ID(s):
1764230
NSF-PAR ID:
10108303
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
21
ISSN:
2040-3364
Page Range / eLocation ID:
10524 to 10535
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A number of complementary, synergistic advances are reported herein. First, we describe the ‘first-time’ synthesis of ultrathin Ru 2 Co 1 nanowires (NWs) possessing average diameters of 2.3 ± 0.5 nm using a modified surfactant-mediated protocol. Second, we utilize a combination of quantitative EDS, EDS mapping (along with accompanying line-scan profiles), and EXAFS spectroscopy results to probe the local atomic structure of not only novel Ru 2 Co 1 NWs but also ‘control’ samples of analogous ultrathin Ru 1 Pt 1 , Au 1 Ag 1 , Pd 1 Pt 1 , and Pd 1 Pt 9 NWs. We demonstrate that ultrathin NWs possess an atomic-level geometry that is fundamentally dependent upon their intrinsic chemical composition. In the case of the PdPt NW series, EDS mapping data are consistent with the formation of a homogeneous alloy, a finding further corroborated by EXAFS analysis. By contrast, EXAFS analysis results for both Ru 1 Pt 1 and Ru 2 Co 1 imply the generation of homophilic structures in which there is a strong tendency for the clustering of ‘like’ atoms; associated EDS results for Ru 1 Pt 1 convey the same conclusion, namely the production of a heterogeneous structure. Conversely, EDS mapping data for Ru 2 Co 1 suggests a uniform distribution of both elements. In the singular case of Au 1 Ag 1 , EDS mapping results are suggestive of a homogeneous alloy, whereas EXAFS analysis pointed to Ag segregation at the surface and an Au-rich core, within the context of a core–shell structure. These cumulative outcomes indicate that only a combined consideration of both EDS and EXAFS results can provide for an accurate representation of the local atomic structure of ultrathin NW motifs. 
    more » « less
  2. Stability is an important aspect of alloys, and proposed alloys may be unstable due to unfavorable atomic interactions. Segregation of an alloy may occur preferentially at specific exposed surfaces, which could affect the alloy's structure since certain surfaces may become enriched in certain elements. Using density functional theory (DFT), we modeled surface segregation in bimetallic alloys involving all transition metals doped in Pt, Pd, Ir, and Rh. We not only modeled common (111) surfaces of such alloys, but we also modeled (100), (110), and (210) facets of such alloys. Segregation is more preferred for early and late transition metals, with middle transition metals being most stable within the parent metal. We find these general trends in segregation energies for the parent metals: Pt > Rh > Pd > Ir. A comparison of different surfaces suggests no consistent trends across the different parent hosts, but segregation energies can vary up to 2 eV depending on the exposed surface. We also developed a statistical model to predict surface-dependent segregation energies. Our model is able to distinguish segregation at different surfaces (as opposed to generic segregation common in previous models), and agrees well with the DFT data. The present study provides valuable information about surface-dependent segregation and helps explain why certain alloy structures occur ( e.g. core–shell). 
    more » « less
  3. Abstract

    Engineering the crystal structure of Pt–M (M = transition metal) nanoalloys to chemically ordered ones has drawn increasing attention in oxygen reduction reaction (ORR) electrocatalysis due to their high resistance against M etching in acid. Although Pt–Ni alloy nanoparticles (NPs) have demonstrated respectable initial ORR activity in acid, their stability remains a big challenge due to the fast etching of Ni. In this work, sub‐6 nm monodisperse chemically orderedL10‐Pt–Ni–Co NPs are synthesized for the first time by employing a bifunctional core/shell Pt/NiCoOxprecursor, which could provide abundant O‐vacancies for facilitated Pt/Ni/Co atom diffusion and prevent NP sintering during thermal annealing. Further, Co doping is found to remarkably enhance the ferromagnetism (room temperature coercivity reaching 2.1 kOe) and the consequent chemical ordering ofL10‐Pt–Ni NPs. As a result, the best‐performing carbon supportedL10‐PtNi0.8Co0.2catalyst reveals a half‐wave potential (E1/2) of 0.951 V versus reversible hydrogen electrode in 0.1mHClO4with 23‐times enhancement in mass activity over the commercial Pt/C catalyst along with much improved stability. Density functional theory (DFT) calculations suggest that theL10‐PtNi0.8Co0.2core could tune the surface strain of the Pt shell toward optimized Pt–O binding energy and facilitated reaction rate, thereby improving the ORR electrocatalysis.

     
    more » « less
  4. Surface segregation is a phenomenon common to all multicomponent materials and one that plays a critical role in determining their surface properties. Comprehensive studies of surface segregation versus bulk composition in ternary alloys have been prohibitive because of the need to study many different compositions. In this work, high-throughput low-energy He+ ionscattering spectra and energy-dispersive X-ray spectra were collected from a CuxAuyPd1−x−y composition spread alloy film under ultrahigh vacuum conditions. These have been used to quantify surface segregation across the entire CuxAuyPd1−x−y composition space (x = 0 → 1 and y = 0 → 1 − x). Surface compositions at 164 different bulk compositions were measured at 500 and 600 K. At both temperatures, Au shows the greatest tendency for segregation to the top-most surface while Pd is always depleted from the surface. Higher temperatures enhance the Au segregation. Segregation at most of the binary alloy bulk compositions matches with observations previously reported in the literature. However, surface compositions in the CuPd B2 composition region reveal segregation profiles that are nonmonotonic in bulk alloy composition. These were not observable in prior studies because of their limited resolution of composition space. An extended Langmuir−MacLean model, which describes ternary alloy segregation, has been used to analyze experimental data from the ternary alloys and to estimate pair-wise segregation free energies and segregation equilibrium constants. The ability to study surface segregation across the ternary alloy composition space with high-throughput methods has been validated, and the impact of bulk alloy phase on surface segregation is demonstrated and discussed. 
    more » « less
  5. Abstract

    Microreactors for nanoparticle (NP) synthesis offer advantages over batch reactions in terms of scale‐up and integration with online analyses. Herein, two microreactors (i.e., a duo‐microreactor) are integrated to achieve sequential reactions for the synthesis of bimetallic NPs with architectural control. The generality of the duo‐microreactor is shown with the synthesis of branched Pd‐Pt NPs and core@shell Pd@Au NPs, both achieved by synthesizing Pd nanocubes in the first part of the duo‐microreactor and then using those nanocubes downstream as seeds for Pt or Au deposition. Control of the dimensions of these NPs is further demonstrated and achieved by tailoring metal precursor concentrations inline. This microreactor methodology is anticipated to be applicable to other bimetallic NP systems.

     
    more » « less