Surface segregation is a common phenomenon in alloys exposed to reactive atmospheres, yet the atomic mechanisms underlying surface structure and composition dynamics remains largely unexplored. Using a combination of environmental transmission electron microscopy observations and atomistic modeling, here we report the surface segregation process of Pt atoms in a dilute Pt(Cu) alloy and determine the distribution of Pt atoms at both atomically flat and stepped surfaces of the Pt(Cu) alloy at elevated temperature and in a hydrogen gas atmosphere. Through directly probing Pt segregation, we find that Pt atoms segregated on the (100) surface exhibit a p(2×2) ordering, with ~25% Pt occupancy. In contrast, on the stepped (410) surface, hydrogen adsorption induces Pt segregation, initially occurring at the step edges, which then expands to the terrace sites upon increased hydrogen coverage, resulting in an ordered distribution of segregated Pt atoms with ~22% occupancy. These observations offer mechanistic insights into the structure and composition dynamics of the topmost atomic layer of the alloy in response to environmental stimuli and hold practical implications for the design and optimization of catalysts based on Pt group metals.
more »
« less
First principles analysis of surface dependent segregation in bimetallic alloys
Stability is an important aspect of alloys, and proposed alloys may be unstable due to unfavorable atomic interactions. Segregation of an alloy may occur preferentially at specific exposed surfaces, which could affect the alloy's structure since certain surfaces may become enriched in certain elements. Using density functional theory (DFT), we modeled surface segregation in bimetallic alloys involving all transition metals doped in Pt, Pd, Ir, and Rh. We not only modeled common (111) surfaces of such alloys, but we also modeled (100), (110), and (210) facets of such alloys. Segregation is more preferred for early and late transition metals, with middle transition metals being most stable within the parent metal. We find these general trends in segregation energies for the parent metals: Pt > Rh > Pd > Ir. A comparison of different surfaces suggests no consistent trends across the different parent hosts, but segregation energies can vary up to 2 eV depending on the exposed surface. We also developed a statistical model to predict surface-dependent segregation energies. Our model is able to distinguish segregation at different surfaces (as opposed to generic segregation common in previous models), and agrees well with the DFT data. The present study provides valuable information about surface-dependent segregation and helps explain why certain alloy structures occur ( e.g. core–shell).
more »
« less
- Award ID(s):
- 1705830
- PAR ID:
- 10166029
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 21
- Issue:
- 42
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 23626 to 23637
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A catalytic surface should be stable under reaction conditions to be effective. However, it takes significant effort to screen many surfaces for their stability, as this requires intensive quantum chemical calculations. To more efficiently estimate stability, we provide a general and data-efficient machine learning (ML) approach to accurately and efficiently predict the surface energies of metal alloy surfaces. Our ML approach introduces an element-centered fingerprint (ECFP) which was used as a vector representation for fitting models for predicting surface formation energies. The ECFP is significantly more accurate than several existing feature sets when applied to dilute alloy surfaces and is competitive with existing feature sets when applied to bulk alloy surfaces or gas-phase molecules. Models using the ECFP as input can be quite general, as we created models with good accuracy over a broad set of bimetallic surfaces including most d-block metals, even with relatively small datasets. For example, using the ECFP, we developed a kernel ridge regression ML model which is able to predict the surface energies of alloys of diverse metal combinations with a mean absolute error of 0.017 eV atom−1. Combining this model with an existing model for predicting adsorption energies, we estimated segregation trends of 596 single-atom alloys (SAAs)with and without CO adsorbed on these surfaces. As a simple test of the approach, we identify specific cases where CO does not induce segregation in these SAAs.more » « less
-
null (Ed.)Alloying is well-known to improve the dehydrogenation selectivity of pure metals, but there remains considerable debate about the structural and electronic features of alloy surfaces that give rise to this behavior. To provide molecular-level insights into these effects, a series of Pd intermetallic alloy catalysts with Zn, Ga, In, Fe and Mn promoter elements was synthesized, and the structures were determined using in situ X-ray absorption spectroscopy (XAS) and synchrotron X-ray diffraction (XRD). The alloys all showed propane dehydrogenation turnover rates 5–8 times higher than monometallic Pd and selectivity to propylene of over 90%. Moreover, among the synthesized alloys, Pd 3 M alloy structures were less olefin selective than PdM alloys which were, in turn, almost 100% selective to propylene. This selectivity improvement was interpreted by changes in the DFT-calculated binding energies and activation energies for C–C and C–H bond activation, which are ultimately influenced by perturbation of the most stable adsorption site and changes to the d-band density of states. Furthermore, transition state analysis showed that the C–C bond breaking reactions require 4-fold ensemble sites, which are suggested to be required for non-selective, alkane hydrogenolysis reactions. These sites, which are not present on alloys with PdM structures, could be formed in the Pd 3 M alloy through substitution of one M atom with Pd, and this effect is suggested to be partially responsible for their slightly lower selectivity.more » « less
-
Recently, we found that the atomic ensemble effect is the dominant effect influencing catalysis on surfaces alloyed with strong- and weak-binding elements, determining the activity and selectivity of many reactions on the alloy surface. In this study we design single-atom alloys that possess unique dehydrogenation selectivity towards ethanol (EtOH) partial oxidation, using knowledge of the alloying effects from density functional theory calculations. We found that doping of a strong-binding single-atom element ( e.g. , Ir, Pd, Pt, and Rh) into weak-binding inert close-packed substrates ( e.g. , Au, Ag, and Cu) leads to a highly active and selective initial dehydrogenation at the α-C–H site of adsorbed EtOH. We show that many of these stable single-atom alloy surfaces not only have tunable hydrogen binding, which allows for facile hydrogen desorption, but are also resistant to carbon coking. More importantly, we show that a rational design of the ensemble geometry can tune the selectivity of a catalytic reaction.more » « less
-
H2 activation is fundamental in catalysis. Single-atom catalysts (SACs) can be highly selective hydrogenation catalysts due to their tunable geometric and electronic properties. In this work, H2 activation (adsorption, splitting, and diffusion) on the anatase TiO2-supported SAC has been modeled in detail. The stable configurations of 14 transition metals from 3d to 5d (Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Os, Ir, Pt, and Au) and Sn have been screened. We compared H and H2 adsorption and H2 heterolytic and homolytic splitting on SA/TiO2. H on the SAC in neutral, hydridic, and proton forms and the preferred H2 dissociation paths are revealed. We found that the metal adatoms strengthen the Brønsted acids via forming the SA-O bonds and promote the H adsorption on Ti sites via forming the Ti3+ sites. The electronic descriptor using the energy level of the frontier d orbital, referenced to vacuum, can predict the single H and H2 dissociative adsorption energies on the metal site. As the SA-Hδ- interaction is stronger than Ti-Hδ-, the activation barriers for heterolytic paths over SA-O sites are lower than over Ti-O sites. H2 adsorption is activated on Au, Ru, Rh, Pd, and Ir in a dihydrogen complex structure with an elongated H-H bond. Homolytic splitting over SA sites is favored thermodynamically and kinetically on Rh, Pd, Os, Ir, and Pt. In contrast, for the remaining SA/TiO2, H-H splitting at the SA-O is kinetically favored compared to the Ti-O sites, but the products are less thermodynamically favored.more » « less