skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dimension estimates for the set of points with non-dense orbit in homogeneous spaces
Let 𝑋=𝐺/Γ, where G is a Lie group and Γ is a lattice in G, and let U be a subset of X whose complement is compact. We use the exponential mixing results for diagonalizable flows on X to give upper estimates for the Hausdorff dimension of the set of points whose trajectories miss U. This extends a recent result of Kadyrov et al. (Dyn Syst 30(2):149–157, 2015) and produces new applications to Diophantine approximation, such as an upper bound for the Hausdorff dimension of the set of weighted uniformly badly approximable systems of linear forms, generalizing an estimate due to Broderick and Kleinbock (Int J Number Theory 11(7):2037–2054, 2015).  more » « less
Award ID(s):
1900560
PAR ID:
10177391
Author(s) / Creator(s):
Date Published:
Journal Name:
Mathematische Zeitschrift
Volume:
295
ISSN:
0025-5874
Page Range / eLocation ID:
1355–1383
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let X = G/Γ, where G is a Lie group and Γ is a uniform lattice in G, and let O be an open subset of X. We give an upper estimate for the Hausdorff dimension of the set of points whose trajectories escape O on average with frequency δ, where 0 < δ ≤ 1. 
    more » « less
  2. Let X =G/Γ, where G is a connected Lie group and Γ is a lattice in G. Let O be an open subset of X, and let F = {g_t : t ≥ 0} be a one-parameter subsemigroup of G. Consider the set of points in X whose F-orbit misses O; it has measure zero if the flow is ergodic. It has been conjectured that, assuming ergodicity, this set has Hausdorff dimension strictly smaller than the dimension of X. This conjecture has been proved when X is compact or when G is a simple Lie group of real rank 1, or, most recently, for certain flows on the space of lattices. In this paper we prove this conjecture for arbitrary Addiagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on G/Γ. We also derive an application to jointly Dirichlet-Improvable systems of linear forms. 
    more » « less
  3. Abstract Let G be a Lie group, let $$\Gamma \subset G$$ be a discrete subgroup, let $$X=G/\Gamma $$ and let f be an affine map from X to itself. We give conditions on a submanifold Z of X that guarantee that the set of points $$x\in X$$ with f -trajectories avoiding Z is hyperplane absolute winning (a property which implies full Hausdorff dimension and is stable under countable intersections). A similar result is proved for one-parameter actions on X . This has applications in constructing exceptional geodesics on locally symmetric spaces and in non-density of the set of values of certain functions at integer points. 
    more » « less
  4. Abstract Let u u be a nontrivial harmonic function in a domain D ⊂ R d D\subset {{\mathbb{R}}}^{d} , which vanishes on an open set of the boundary. In a recent article, we showed that if D D is a C 1 {C}^{1} -Dini domain, then, within the open set, the singular set of u u , defined as { X ∈ D ¯ : u ( X ) = 0 = ∣ ∇ u ( X ) ∣ } \left\{X\in \overline{D}:u\left(X)=0=| \nabla u\left(X)| \right\} , has finite ( d − 2 ) \left(d-2) -dimensional Hausdorff measure. In this article, we show that the assumption of C 1 {C}^{1} -Dini domains is sharp, by constructing a large class of non-Dini (but almost Dini) domains whose singular sets have infinite ℋ d − 2 {{\mathcal{ {\mathcal H} }}}^{d-2} -measures. 
    more » « less
  5. Let Γ<#comment/> \Gamma be a countable abelian group. An (abstract) Γ<#comment/> \Gamma -system X \mathrm {X} - that is, an (abstract) probability space equipped with an (abstract) probability-preserving action of Γ<#comment/> \Gamma - is said to be aConze–Lesigne systemif it is equal to its second Host–Kra–Ziegler factor Z 2 ( X ) \mathrm {Z}^2(\mathrm {X}) . The main result of this paper is a structural description of such Conze–Lesigne systems for arbitrary countable abelian Γ<#comment/> \Gamma , namely that they are the inverse limit of translational systems G n / Λ<#comment/> n G_n/\Lambda _n arising from locally compact nilpotent groups G n G_n of nilpotency class 2 2 , quotiented by a lattice Λ<#comment/> n \Lambda _n . Results of this type were previously known when Γ<#comment/> \Gamma was finitely generated, or the product of cyclic groups of prime order. In a companion paper, two of us will apply this structure theorem to obtain an inverse theorem for the Gowers U 3 ( G ) U^3(G) norm for arbitrary finite abelian groups G G
    more » « less