- Award ID(s):
- 1724392
- PAR ID:
- 10108601
- Date Published:
- Journal Name:
- AAMAS '19: Proceedings of the 18th International Conference on Autonomous Agents and MultiAgent Systems
- Page Range / eLocation ID:
- 1770-1772
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures.more » « less
-
This work presents an efficient and implementable solution to the problem of joint task allocation and path planning in a multi-UAV platform. The sensing requirement associated with the task gives rise to an uncanny variant of the traditional vehicle routing problem with coverage/sensing constraints. As is the case in several multi-robot path-planning problems, our problem reduces to an mTSP problem. In order to tame the computational challenges associated with the problem, we propose a hierarchical solution that decouples the vehicle routing problem from the target allocation problem. As a tangible solution to the allocation problem, we use a clustering-based technique that incorporates temporal uncertainty in the cardinality and position of the robots. Finally, we implement the proposed techniques on our multi-quadcopter platforms.more » « less
-
We study two multi-robot assignment problems for multi-target tracking. We consider distributed approaches in order to deal with limited sensing and communication ranges. We seek to simultaneously assign trajectories and targets to the robots. Our focus is on \emph{local} algorithms that achieve performance close to the optimal algorithms with limited communication. We show how to use a local algorithm that guarantees a bounded approximate solution within $\mathcal{O}(h\log{1/\epsilon})$ communication rounds. We compare with a greedy approach that achieves a $2$--approximation in as many rounds as the number of robots. Simulation results show that the local algorithm is an effective solution to the assignment problem.more » « less
-
Abstract In various applications of multi-robotics in disaster response, warehouse management, and manufacturing, tasks that are known a priori and tasks added during run time need to be assigned efficiently and without conflicts to robots in the team. This multi-robot task allocation (MRTA) process presents itself as a combinatorial optimization (CO) problem that is usually challenging to be solved in meaningful timescales using typical (mixed)integer (non)linear programming tools. Building on a growing body of work in using graph reinforcement learning to learn search heuristics for such complex CO problems, this paper presents a new graph neural network architecture called the covariant attention mechanism (CAM). CAM can not only generalize but also scale to larger problems than that encountered in training, and handle dynamic tasks. This architecture combines the concept of covariant compositional networks used here to embed the local structures in task graphs, with a context module that encodes the robots’ states. The encoded information is passed onto a decoder designed using multi-head attention mechanism. When applied to a class of MRTA problems with time deadlines, robot ferry range constraints, and multi-trip settings, CAM surpasses a state-of-the-art graph learning approach based on the attention mechanism, as well as a feasible random-walk baseline across various generalizability and scalability tests. Performance of CAM is also found to be at par with a high-performing non-learning baseline called BiG-MRTA, while noting up to a 70-fold improvement in decision-making efficiency over this baseline.
-
Videos of group interactions contain a wealth of information beyond the information directly communicated in a transcript of the discussion. Tracking who has participated throughout an extended interaction and what each of their trajectories has been in relation to one another is the foundation for joint activity understanding, though it comes with some unique challenges in videos of tightly coupled group work. Motivated by insights into the properties of such scenarios, including group composition and the properties of task-oriented, goal-directed tasks, we present a successful proof-of-concept. In particular, we present a transfer experiment to a dyadic robot construction task, an ablation study, and a qualitative analysis.more » « less