skip to main content


Title: Planning for Aerial Robot Teams for Wide-Area Biometric and Phenotypic Data Collection
This work presents an efficient and implementable solution to the problem of joint task allocation and path planning in a multi-UAV platform. The sensing requirement associated with the task gives rise to an uncanny variant of the traditional vehicle routing problem with coverage/sensing constraints. As is the case in several multi-robot path-planning problems, our problem reduces to an mTSP problem. In order to tame the computational challenges associated with the problem, we propose a hierarchical solution that decouples the vehicle routing problem from the target allocation problem. As a tangible solution to the allocation problem, we use a clustering-based technique that incorporates temporal uncertainty in the cardinality and position of the robots. Finally, we implement the proposed techniques on our multi-quadcopter platforms.  more » « less
Award ID(s):
1816343
NSF-PAR ID:
10351067
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
International Conference on Intelligent Robots and Systems
Page Range / eLocation ID:
2586 to 2591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From the perspective of practical application, a novel task allocation problem for multi-vehicle systems is proposed. The goal is to allocate an optimal route for each vehicle to execute tasks. The planning result is a comprehensive decision considering the influence of time windows, collaborative tasks, and recharging. This problem is represented as a new extension of the classical vehicle routing problem and a multi-objective integer programming mathematical model is established. The objective functions are the total completion time and total penalty costs. A solution strategy hybridizing non-dominated sorting genetic algorithm-II and variable neighborhood search is proposed, and a feasibility recovery strategy and the concept of the immigrant population are introduced. Finally, the simulation results show that the proposed algorithm can solve the problem effectively and is robust to different complexity scenarios. To illustrate concretely the optimization process, an instance is given in the last.

     
    more » « less
  2. null (Ed.)
    Complex service robotics scenarios entail unpredictable task appearance both in space and time. This requires robots to continuously relocate and imposes a trade-off between motion costs and efficiency in task execution. In such scenarios, multi-robot systems and even swarms of robots can be exploited to service different areas in parallel. An efficient deployment needs to continuously determine the best allocation according to the actual service needs, while also taking relocation costs into account when such allocation must be modified. For large scale problems, centrally predicting optimal allocations and movement paths for each robot quickly becomes infeasible. Instead, decentralized solutions are needed that allow the robotic system to self-organize and adaptively respond to the task demands. In this paper, we propose a distributed and asynchronous approach to simultaneous task assignment and path planning for robot swarms, which combines a bio-inspired collective decision-making process for the allocation of robots to areas to be serviced, and a search-based path planning approach for the actual routing of robots towards tasks to be executed. Task allocation exploits a hierarchical representation of the workspace, supporting the robot deployment to the areas that mostly require service. We investigate four realistic environments of increasing complexity, where each task requires a robot to reach a location and work for a specific amount of time. The proposed approach improves over two different baseline algorithms in specific settings with statistical significance, while showing consistently good results overall. Moreover, the proposed solution is robust to limited communication and robot failures. 
    more » « less
  3. We consider multi-robot service scenarios, where tasks appear at any time and in any location of the working area. A solution to such a service task problem requires finding a suitable task assignment and a collision-free trajectory for each robot of a multi-robot team. In cluttered environments, such as indoor spaces with hallways, those two problems are tightly coupled. We propose a decentralized algorithm for simultaneously solving both problems, called Hierarchical Task Assignment and Path Finding (HTAPF). HTAPF extends a previous bio-inspired Multi-Robot Task Allocation (MRTA) framework [1]. In this work, task allocation is performed on an arbitrarily deep hierarchy of work areas and is tightly coupled with a fully distributed version of the priority-based planning paradigm [12], using only broadcast communication. Specifically, priorities are assigned implicitly by the order in which data is received from nearby robots. No token passing procedure or specific schedule is in place ensuring robust execution also in the presence of limited probabilistic communication and robot failures. 
    more » « less
  4. Abstract

    This paper introduces a new graph neural network architecture for learning solutions of Capacitated Vehicle Routing Problems (CVRP) as policies over graphs. CVRP serves as an important benchmark for a wide range of combinatorial planning problems, which can be adapted to manufacturing, robotics and fleet planning applications. Here, the specific aim is to demonstrate the significant real-time executability and (beyond training) scalability advantages of the new graph learning approach over existing solution methods. While partly drawing motivation from recent graph learning methods that learn to solve CO problems such as multi-Traveling Salesman Problem (mTSP) and VRP, the proposed neural architecture presents a novel encoder-decoder architecture. Here the encoder is based on Capsule networks, which enables better representation of local and global information with permutation invariant node embeddings; and the decoder is based on the Multi-head attention (MHA) mechanism allowing sequential decisions. This architecture is trained using a policy gradient Reinforcement Learning process. The performance of our approach is favorably compared with state-of-the-art learning and non-learning methods for a benchmark suite of Capacitated-VRP (CVRP) problems. A further study on the CVRP with demand uncertainties is conducted to explore how this Capsule-Attention Mechanism architecture can be extended to handle real-world uncertainties by embedding them through the encoder.

     
    more » « less
  5. We study the labeled multi-robot path planning problem in continuous 2D and 3D domains in the absence of obstacles where robots must not collide with each other. For an arbitrary number of robots in arbitrary initial and goal arrangements, we derive a polynomial time, complete algorithm that produces solutions with constant-factor optimality guarantees on both makespan and distance optimality, in expectation, under the assumption that the robot labels are uniformly randomly distributed. Our algorithm only requires a small constant-factor expansion of the initial and goal configuration footprints for solving the problem, i.e., the problem can be solved in a fairly small bounded region. Beside theoretical guarantees, we present a thorough computational evaluation of the proposed solution. In addition to the baseline implementation, adapting an effective (but non-polynomial time) routing subroutine, we also provide a highly efficient implementation that quickly computes near-optimal solutions. Hardware experiments on the microMVP platform composed of non-holonomic robots confirms the practical applicability of our algorithmic pipeline. 
    more » « less