skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: STOCHASTIC OPTIMIZATION FOR FEASIBILITY DETERMINATION: AN APPLICATION TO WATER PUMP OPERATION IN WATER DISTRIBUTION NETWORK
Water Distribution Networks are a particularly critical infrastructure for the high energy costs and frequent failures. Variable Speed Pumps have been introduced to improve the regulation of water pumps, a key for the overall infrastructure performance. This paper addresses the problem of analyzing the effect of the VSPs regulation on the pressure distribution of a WDN, which is highly correlated to leakages and energy costs. Due to the fact that water network behavior can only be simulated, we formulate the problem as a black box feasibility determination, which we solve with a novel stochastic partitioning algorithm, the Feasibility Set Approximation Probabilistic Branch and Bound, that extends the algorithm previously proposed by two of the authors. We use, as black box, EPANet, a widely adopted hydraulic simulator. The preliminary results, over theoretical functions as well as a water distribution network benchmark case, show the viability and advantages of the proposed approach.  more » « less
Award ID(s):
1632793
PAR ID:
10108685
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2018 Winter Simulation Conference
Page Range / eLocation ID:
1945 to 1956
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Real‐time water quality control (WQC) in water distribution networks (WDN), the problem of regulating disinfectant levels, is challenging due to lack of (i) a proper control‐oriented modeling considering complicated components (junctions, reservoirs, tanks, pipes, pumps, and valves) for water quality modeling in WDN and (ii) a corresponding scalable control algorithm that performs real‐time water quality regulation. In this paper, we solve the WQC problem by (a) proposing a novel state‐space representation of the WQC problem that provides an explicit relationship between inputs (chlorine dosage at booster stations) and states/outputs (chlorine concentrations in the entire network) and (b) designing a highly scalable model predictive control (MPC) algorithm that showcases fast response time and resilience against some sources of uncertainty. 
    more » « less
  2. Abstract Addressing challenges in urban water infrastructure systems, including aging infrastructure, supply uncertainty, extreme events, and security threats, depends highly on water distribution networks modeling emphasizing the importance of realistic assumptions, modeling complexities, and scalable solutions. In this study, we propose a derivative‐free, linear approximation for solving the network water flow problem. The proposed approach takes advantage of the special form of the nonlinear head loss equations, and, after the transformation of variables and constraints, the water flow problem reduces to a linear optimization problem that can be efficiently solved by modern linear solvers. Ultimately, the proposed approach amounts to solving a series of linear optimization problems. We demonstrate the proposed approach through several case studies and show that the approach can model arbitrary network topologies and various types of valves and pumps, thus providing modeling flexibility. Under mild conditions, we show that the proposed linear approximation converges. We provide sensitivity analysis and discuss in detail the current limitations of our approach and suggest solutions to overcome these. All the codes, tested networks, and results are freely available on Github for research reproducibility. 
    more » « less
  3. Abstract Failures within water distribution systems are usually not isolated and tend to propagate to corresponding transportation infrastructure, yet most criticality and resilience analyses of water distribution networks are conducted for the individual water infrastructure without accounting for interdependence. To address this research gap, this study investigates how the critical components identified within water distribution systems may be different when accounting for failure propagation to the transportation road network. In this study, failure propagation is assumed to be based on geospatial interdependence and unidirectional, starting from water distribution network components to transportation network components. A logical interaction network is constructed considering the interdependence between both infrastructures, and multiobjective optimization is used to solve for the critical water distribution components considering: quantity of failures, performance loss, and financial costs. This work presents a modular workflow for water distribution criticality analysis and proposes the Kolmogorov‐Smirnov distance statistic between solution sets as a measure of the significance of interdependency for decision making. Results from the case study suggest that as the magnitude of water infrastructure failure increases beyond a threshold, the interdependency between water distribution and transportation becomes more significant. The difference between identified critical components using only information from water distribution and using both water distribution and transportation is significantly different (with greater than 95% confidence) for the city of Tampa, when more than 40 components fail (are isolated). These results will assist utilities in asset management and strategy assessment, by helping prioritize component repair and better allocate resources for critical interdependent infrastructures. 
    more » « less
  4. Pumps in drinking water distribution networks can be controlled to participate in demand response programs. In this paper, we estimate the demand response potential of water distribution networks based on actual network data. We calculate the power and energy capacities of community water systems within Wisconsin and Arizona, drawing on publicly available data of consumer water demand, population served, storage tanks, and pump specifications. We then extrapolate this data to get an order-of-magnitude estimate for the entire United States. Overall, we found that water distribution networks are sizable demand response assets with an estimated power capacity of 13 GW and energy capacity of 750 GWh in the United States. We also found that large and very large utilities may be the best demand response candidates. This paper also discusses factors impacting water supply flexibility and future research directions. 
    more » « less
  5. null (Ed.)
    The primary goal of the project is to leverage recent developments in smart water technologies to detect and reduce water leakages in large water distribution networks with the aid of neural networks. A cost effective non-invasive solution to detect leakages in transmission pipelines is needed by many water utilities as it will lead to significant water savings and reduced pipe breakage frequencies, especially in older infrastructure systems. The eventual goal of the project is to test the ANN model on a real network using field measured pressure and pipe breakage data after tuning and developing the model with simulated data. In this project we propose building a regression model, based on Multi-Layer Perceptron (MLP) algorithm, which is a class of feedforward Artificial Neural Networks (ANNs) to detect the leak locations within a proposed network. The model should be able to learn the structure, i.e. mapping of various leak nodes and sensor nodes in an area, such that it can detect the leak nodes based on the pressure values with significant accuracy. 
    more » « less